首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Pushing and pulling account for nearly half of all manual material handling tasks. The purpose of this investigation was to develop a 3-D spatial muscle activity map for the right upper extremity during pushing and pulling tasks. Nineteen males performed 140 ramped directional hand exertions (70 push; 70 pull) at locations along three axes aligned with the anatomical planes. Electromyography (EMG) of 14 sites on the right upper extremity was recorded. Two directional 3-way repeated measures ANOVAs assessed the influence of hand position on EMG. Hand position and exertion direction influenced total and individual muscle demand. During pulling exertions, all three hand location parameters influenced total muscle activity (p < 0.001) and similarly in pushing exertions (p < 0.002), though less pronounced than in pulling. Data were used to create equations to predict the muscle activity of untested hand locations for novel work design scenarios.  相似文献   

3.
《Ergonomics》2012,55(6):859-876
Powered hand tools produce reaction forces that may be associated with upper extremity musculoskeletal disorders. The handle displacement, grip force and upper limb muscle activity (electromyography (EMG)) due to the effects of operator experience, working height and distance, type of tool and fastener joint hardness were measured in this study with 15 experienced and 15 novice nutrunner users. The results show that when pistol grip handles were used to work on a horizontal surface, experienced users allowed an average handle displacement of 7.9°, while novice users allowed 11.5°. Average EMG scaled by reference voluntary contraction (RVC) at forearm flexors, forearm extensors and biceps were greater for experienced users (318% RVC, 285% RVC, 143% RVC, respectively) than for novice users (246% RVC, 219% RVC, 113% RVC, respectively). Experienced users exerted more grip force than novice users when using right angle handles, but less force when using pistol grip handles. The results suggest that it is possible to minimize tool handle displacement by adapting the workplace layout to permit different working postures for each user group.  相似文献   

4.
Powered hand tools produce reaction forces that may be associated with upper extremity musculoskeletal disorders. The handle displacement, grip force and upper limb muscle activity (electromyography (EMG)) due to the effects of operator experience, working height and distance, type of tool and fastener joint hardness were measured in this study with 15 experienced and 15 novice nutrunner users. The results show that when pistol grip handles were used to work on a horizontal surface, experienced users allowed an average handle displacement of 7.9 degrees, while novice users allowed 11.5 degrees. Average EMG scaled by reference voluntary contraction (RVC) at forearm flexors, forearm extensors and biceps were greater for experienced users (318% RVC, 285% RVC, 143% RVC, respectively) than for novice users (246% RVC, 219% RVC, 113% RVC, respectively). Experienced users exerted more grip force than novice users when using right angle handles, but less force when using pistol grip handles. The results suggest that it is possible to minimize tool handle displacement by adapting the workplace layout to permit different working postures for each user group.  相似文献   

5.
The quantification of EMG normalization error.   总被引:5,自引:0,他引:5  
G A Mirka 《Ergonomics》1991,34(3):343-352
  相似文献   

6.
Recent studies have suggested that ergonomic factors may contribute to risks experienced by overhead crane operators. However, there are few studies that provide a comprehensive overview of the physical demands of overhead crane operation. This study aimed to provide this information by quantifying muscular, postural, and upper limb movement demands of overhead crane operation including examination of muscle activation and trunk posture by task. Trunk posture, upper limb movement demands and muscle activation in the trunk and upper limbs were quantified for seven overhead crane operators. Trunk posture was quantified using trunk angle and joystick motion requirements were determined using camera data. Muscle activation was measured bilaterally using surface EMG for the upper trapezii, anterior deltoids, posterior deltoids, biceps brachii, triceps brachii, flexor carpi radialis and erector spinae. Lastly, joystick force requirements were assessed using a spring scale. High upper limb and trunk muscle loading were observed when compared to joystick use in other heavy machinery, in part due to the forward, trunk-flexed position required to adequately view the workspace, and the increased force requirements of the joysticks. Joystick input force requirements were 9–31 N for the right-hand joystick and 11–40 N for the left-hand joystick. Operators maintained a forward trunk flexion (>20°) for all subtasks which suggests that trunk posture might play a role in sustained trunk muscle activation. Results suggest that the primary issue with overhead crane cab operation is upper limb and trunk muscle loading. Results confirm the need to investigate muscle load reduction strategies such as camera systems to help reduce the need for trunk flexion. Other design modification suggestions include reducing the joystick input force and displacement requirements coupled with potentially distributing the machine functions more evenly across the right and left controllers.  相似文献   

7.
This project evaluated the feasibility of a new method of collection of electromyographic (EMG) data during working conditions in industry, and quantified the effects of specific job modifications on the EMG activity of selected upper extremity muscle groups. Average root mean square (RMS) surface EMG activity, calibrated to force equivalent units, was collected on 20 workers from three pork processing tasks before and after ergonomic modifications to their tasks. Significant reductions in muscle effort were detected in the biceps and/or wrist and finger flexors after modification for two of the three tasks. This EMG measurement technique can be used to objectively validate reduced muscle effort with ergonomic modifications.  相似文献   

8.
《Ergonomics》2012,55(3):336-343
Direction of loading and performance of multiple tasks have been shown to elevate muscle activity in the upper extremity. The purpose of this study was to evaluate the effects of gripping on muscle activity and applied force during pushing and pulling tasks with three forearm postures. Twelve volunteers performed five hand-based tasks in supinated, neutral and pronated forearm postures with the elbow at 90° and upper arm vertical. All tasks were performed with the right (dominant) hand and included hand grip alone, push and pull with and without hand grip. Surface EMG from eight upper extremity muscles, hand grip force, tri-axial push and pull forces and wrist angles were recorded during the 10 s trials. The addition of a pull force to hand grip elevated activity in all forearm muscles (all p < 0.017). During all push with grip tasks, forearm extensor muscle activity tended to increase when compared with grip only while flexor activity tended to decrease. Forearm extensor muscle activity was higher with the forearm pronated compared with neutral and supinated postures during most isolated grip tasks and push or pull with grip tasks (all p < 0.017). When the grip dynamometer was rotated so that the push and pull forces could act to assist in creating grip force, forearm muscle activity generally decreased. These results provide strategies for reducing forearm muscle loading in the workplace.

Statement of Relevance: Tools and tasks designed to take advantage of coupling grip with push or pull actions may be beneficial in reducing stress and injury in the muscles of the forearm. These factors should be considered in assessing the workplace in terms of acute and cumulative loading.  相似文献   

9.
Working at a computer is part of a large number of jobs and has been associated with upper extremity musculoskeletal disorders and back pain. The study evaluated the effects of a board attachment on upper extremity and back. The findings are mixed in that the board may have a positive effect in preventing back pain, but may be detrimental to upper extremities. Effect of a desk attachment board on upper extremity and trunk posture, and muscle activity was assessed in women video display terminal users. Participants completed a standard 20-min computer task under two conditions: 1) using a standard desk; 2) using a desk attachment board designed to support the forearms. Bilateral electromyography of the trapezius, multifidus and longissimus muscles and the right anterior deltoid and forearm extensor muscles was recorded. 3-D trunk and upper extremity posture was monitored. Participants were tested before and after 2 weeks of familiarisation with the board in their workplace. Perceived tension and discomfort were recorded before and after use of the board. Use of the board tended to increase muscle activity in the right trapezius and forearm extensor and to decrease muscle activity in the back. Perceived tension in the low back decreased slightly with the board. The board may be useful in reducing tension in the low back during computer work, but may adversely affect the upper extremities.  相似文献   

10.
《Ergonomics》2012,55(11):1735-1756
Working at a computer is part of a large number of jobs and has been associated with upper extremity musculoskeletal disorders and back pain. The study evaluated the effects of a board attachment on upper extremity and back. The findings are mixed in that the board may have a positive effect in preventing back pain, but may be detrimental to upper extremities. Effect of a desk attachment board on upper extremity and trunk posture, and muscle activity was assessed in women video display terminal users. Participants completed a standard 20-min computer task under two conditions: 1) using a standard desk; 2) using a desk attachment board designed to support the forearms. Bilateral electromyography of the trapezius, multifidus and longissimus muscles and the right anterior deltoid and forearm extensor muscles was recorded. 3-D trunk and upper extremity posture was monitored. Participants were tested before and after 2 weeks of familiarisation with the board in their workplace. Perceived tension and discomfort were recorded before and after use of the board. Use of the board tended to increase muscle activity in the right trapezius and forearm extensor and to decrease muscle activity in the back. Perceived tension in the low back decreased slightly with the board. The board may be useful in reducing tension in the low back during computer work, but may adversely affect the upper extremities.  相似文献   

11.
《Ergonomics》2012,55(2):471-488
A simulated assembly-line task was constructed to investigate the metabolic cost and the pattern of muscular fatigue associated with selected arm lifts. Five healthy males lifted lead-filled cylinders five limes per minute in eight 1 hour sessions. In each session, the effect of varying the weight of the cylinders and the horizontal and vertical location or the point to which they were lifted was studied. Muscle fatigue was assessed from a frequency shift and rectified amplitude analysts of surface electromyographic records (EMG) of the deltoid, biceps, brachioradialis and upper trapezius muscles. Metabolic costs of the work were estimated from an analysis of heart rate and oxygen uptake. Additional measures included tests of strength decrement and ratings of perceived fatigue.

The results indicated that the most fatiguing task variable was weight. At the heavier of the two levels, weight significantly increased the EMG amplitude of the deltoid, biceps and brachioradialis muscles. Significant increases in the EMG amplitude of the biceps were also found when the variable of height was adjusted to the higher of two levels. There was a similar effect on the EMG level of the deltoid muscle when reach was at a maximum. Although not as dramatic as the increases in EMG activity, both heart rate and oxygen uptake were significantly increased when the variables of height and weight were at their maximum levels, i.e. eye level and 80% maximum voluntary contraction ( MVC) The results provided a physiological basis for evaluating the effects of three task variables in lifting tasks involving upper extremity muscles  相似文献   

12.
BackgroundDairy production in the U.S. is moving towards large-herd milking operations resulting in an increase in task specialization and work demands. Large-herd dairy parlor workers experience a high prevalence of musculoskeletal symptoms in the upper extremity. The purpose of this study is to evaluate the effects of an alternative teat scrubber (TS) cow preparation method on upper extremity muscle activity among large-herd parlor workers, as well compare to muscle activity associated with conventional manual milking tasks.MethodsUpper extremity muscle activity was recorded among U.S. large-herd parlor workers (n = 15) using surface electromyography. Participants performed multiple task cycles, using both conventional and TS methods. Muscle activity levels were then compared across conventional manual and TS milking tasks.ResultsConventional manual milking tasks of dip, strip and wipe were associated higher muscle activity levels of the upper trapezius and anterior deltoid. Biceps muscle activity was greatest during teat dip and wipe. Forearm flexor and extensor muscle activity was greatest during teat wipe and dip. The TS system resulted in more desirable anterior deltoid EMG profiles, and less desirable biceps, forearm flexor and extensor profiles.ConclusionsResults suggest that the TS system is effective in reducing anterior deltoid muscle activation levels. The TS system also appears to result in increased biceps, forearm flexor and extensor muscle activation levels. Increases in muscle activation levels could be offset by reduced repetitiveness resulting from three conventional manual milking tasks being replaced with one TS task.Relevance to industryIf parlor production requirements (e.g., quality and onsistency) are maintained while simultaneously reducing cumulative muscle loading and worker fatigue, then TS use should be considered in milking parlor operations.  相似文献   

13.
《Ergonomics》2012,55(9):1144-1152
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18–25%) and muscle activity (by 15–30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.  相似文献   

14.
Custodians engage in strenuous manual labour throughout their workday. Uncertainty exists on whether kinematics or muscle activation changes as workers progress through their shift. The purpose of this study was to examine muscle activation and upper extremity kinematics during typical custodial tasks performed at the start and end of the work shift. Electromyography (EMG) of 8 torso and upper extremity muscles and motion capture of the corresponding region were collected for 10 custodial participants while they completed garbage removal, dry mopping, and vacuuming tasks at the start and end of a work shift. The start of shift assessment demonstrated larger anterior deltoid, posterior deltoid and extensor digitorum activation by up to 12.6 %maximal voluntary contraction (%MVC) (p < 0.001–0.023). Task affected mean and peak EMG in all muscles except flexor digitorum (p < 0.001–0.0293), and the greatest activation was found during vacuuming (peak <55%MVC in anterior and middle deltoid) and the heaviest garbage removal task (84% MVC peak in upper trapezius). Mopping created the lowest amounts of activation for almost all muscles. Joint range of motion (p < 0.001–0.031) in the shoulder was highest in vacuuming, while trunk flexion was largest in garbage removal tasks. This work replicated common custodial tasks in a laboratory, using actual custodial workers at times relevant to their typical work shifts. The information presented is useful for ergonomists, work tasks designers and custodial administration staff to develop guidelines for injury prevention.  相似文献   

15.
The purpose of this study was to investigate the impact of using a wrench under isotonic (constant torque) and isokinetic (constant speed) task modes (TM) at three work surface inclinations (WSI) (0°, 45°, and 90°) on the biomechanical (muscle activity) and kinematic (joint posture) responses of the upper extremity. The muscle activity of seven muscles (trapezius posterior deltoid, anterior deltoid, triceps, biceps, brachioradialis, and flexor digitorium) and posture of four body segments (shoulder adduction/abduction, elbow flexion/extension, forearm supination/pronation and wrist flexion/extension) were obtained using surface electromyography and motion tracking, respectively. WSI showed a statistically significant effect on the muscle activity of the posterior deltoid (p = .038), triceps (p = .016), and biceps (p = .021). The least muscle activity was recorded at the 0° WSI in the isotonic TM. WSI had a significant impact on the supination (p = .017) and pronation (p = .011) of the forearm. The 45° WSI had the least impact on forearm postures. Wrenches are widely used in industries, including automobile service and maintenance, manufacturing, carpentry, and general repair work. Their usage poses risks for the development of musculoskeletal disorders in the upper extremity. In spite of this, knowledge of their physical demands and associated impact on the upper extremity has not been well documented. This study provides empirical evidence on the biomechanical and kinematic responses of selected upper extremity muscles and limb segments and highlights task performance and workstation design factors that elicit undue levels of these responses. The results of this work can provide guidance for ergonomic interventions such as optimized task design and/or improved workstation design when it comes to wrench‐turning tasks.  相似文献   

16.
OBJECTIVE: The purpose of this study was to design and test alternative computer mouse designs that attempted to reduce extensor muscle loading of the index and middle fingers by altering the orientation of the button switch direction and the force of the switch. BACKGROUND: Computer users of two-button mouse designs exhibit sustained lifted finger behaviors above the buttons, which may contribute to hand and forearm musculoskeletal pain associated with intensive mouse use. METHODS: In a repeated-measures laboratory experiment, 20 participants completed point-and-click, steering, and drag tasks with four alternative mouse designs and a reference mouse. Intramuscular and surface electromyography (EMG) measured muscle loading, and movement times recorded by software provided a measure of performance. RESULTS: Changing the direction of the switch from a conventional downward to a forward design reduced (up to 2.5% maximum voluntary contraction [MVC]) sustained muscle activity (10th percentile EMG amplitude distribution) in the finger extensors but increased (up to 0.6% MVC) flexor EMG and increased movement times (up to 31%) compared with the reference mouse (p < .001). Implementing a high switch force design also increased flexor EMG but did not differ in movement times compared with the reference mouse (p < .001). CONCLUSION: The alternative mouse designs with altered switch direction reduced sustained extensor muscle loading; however, trade-offs with higher flexor muscle loading and lower performance existed. APPLICATION: Potential applications of this study include ergonomic and human computer interface design strategies in reducing the exposure to risk factors that may lead to upper extremity musculoskeletal disorders.  相似文献   

17.
OBJECTIVE: Compare muscle activity and trunk stiffness during isometric trunk flexion and extension exertions. BACKGROUND: Elastic stiffness of the torso musculature is considered the primary stabilizing mechanism of the spine. Therefore, stiffness of the trunk during voluntary exertions provides insight into the stabilizing control of pushing and pulling tasks. METHODS: Twelve participants maintained an upright posture against external flexion and extension loads applied to the trunk. Trunk stiffness, damping, and mass were determined from the dynamic relation between pseudorandom force disturbances and subsequent small-amplitude trunk movements recorded during the voluntary exertions. Muscle activity was recorded from rectus abdominus, external oblique, lumbar paraspinal, and internal oblique muscle groups. RESULTS: Normalized electromyographic activity indicated greater antagonistic muscle recruitment during flexion exertions than during extension. Trunk stiffness was significantly greater during flexion exertions than during extension exertions despite similar levels of applied force. Trunk stiffness increased with exertion effort. CONCLUSION: Theoretical and empirical analyses reveal that greater antagonistic cocontraction is required to maintain spinal stability during trunk flexion exertions than during extension exertions. Measured differences in active trunk stiffness were attributed to antagonistic activity during flexion exertions with possible contributions from spinal kinematics and muscle lines of action. APPLICATION: When compared with trunk extension exertions, trunk flexion exertions such as pushing tasks require unique neuromuscular control that is not simply explained by differences in exertion direction. Biomechanical analyses of flexion tasks must consider the stabilizing muscle recruitment patterns when evaluating spinal compression and shear loads.  相似文献   

18.
No trunk support (NTS) was compared to a lower trunk support (LTS) of leaning against a worktable and a dynamic upper trunk support (UTS) using postural kinematics, trunk extensor muscle activity and subjective rating of both comfort and effort. Ten females completed 3 repetitions where they lifted 0 and 5 kg load from a symmetrical position at hip-height to a 45° asymmetric position at: i) hip-height and ii) shoulder-height. Human motion capture showed trunk flexion decreased by 12° ± 10 with trunk support with hip-height reach. The table blocked axial rotation of the pelvis which was compensated by an additional 8° ± 6 rotation of the thoracic segment. Surface EMG of the lumbar erector spinae, contralateral to reach, showed the UTS to be almost twice as effective as the LTS with shoulder-height reach with a 30% ± 18 reduction. With hip-height reach, UTS resulted in a smaller reduction equal to 23% ± 27 while the LTS had no effect. Further investigation is needed to determine optimal performance parameters for trunk support with complex, dynamic trunk postures and whether altered kinematics arising from LTS have higher risk of upper back discomfort.  相似文献   

19.
AimTransportation of materials using a pallet jack pulled behind the operator is common due to the visual advantages while transporting fully loaded pallets. The objective of this laboratory study was to quantify muscle activity, posture, and low back compressive and shear forces while completing typical pallet jack activities using a standard handle that required one handed pulling of a pallet jack compared to an alternative handle that allowed for two handed pushing.MethodsParticipants (n = 14) performed six to ten trials of common pallet jack tasks (straight travel and turning) with each handle. Posture analysis of the trunk and right upper extremity was performed using Motion Analysis (Santa Rosa, CA, USA) and back compressive and shear forces were analyzed using 3D Static Strength Prediction Program (University of Michigan, Ann Arbor, MI). Activity of the upper trapezius (UT), pectoralis major (PM), flexor digitorum superficialis (FDS) and extensor digitorum (ED) muscles were recorded (Telemyo 2400 T, Noraxon, Scottsdale, Arizona) and normalized to percent reference voluntary contraction values. All outcomes were compared using the paired t-test.ResultsPeak and mean muscle activity of the PM (p < 0.001) and ED (p < 0.01) were significantly higher using the alternative push handle during all three tasks. There were larger compressive forces at L4/L5 (p < 0.08) and L5/S1 (p < 0.002) using the alternative handle, and greater shear forces using the standard handle at both L4/L5 (p < 0.0001) and L5/S1 (p < 0.000).DiscussionThe standard handle outperformed the alternative handle with regard to muscle activity. The alternative handle had significantly greater compressive forces at L5/S1 due to the pushing nature of the hand-handle interface, yet the standard handle increased shear forces at both L4/L5 and L5/S1 levels in the low back.ConclusionIn this analysis, there was not a clear benefit to using either handle in terms of trunk strength capacity and varied benefits and drawbacks to each handle when comparing compressive and shear forces in the low back. However, given favorable subjective reports described in a prior publication, and the increased reliance on dynamic versus passive force production, facilitating a workers' ability to push a pallet jack while travelling with large loads is worth further investigation.  相似文献   

20.
Brown SH  Potvin JR 《Ergonomics》2007,50(5):743-751
Electromyography (EMG)-driven models of the spine routinely require between ten and 14 EMG channels to estimate joint load and stiffness variables. This study was designed to determine the sensitivity of common EMG-driven model outputs to the removal of individual EMG channels, and to test two adapted models driven from eight channels. A total of 11 male participants performed a variety of static exertions designed to resist either an applied trunk flexion or right side trunk lateral bend moment. In this study, 14 channels of EMG were recorded and used to drive a biomechanical model of the spine to predict L4-L5 joint load and stiffness values. The model was subsequently re-run after the removal of individual pairs of bilateral EMG channels, and again with eight-channel models in which the rectus abdominus, latissimus dorsi and multifidus EMG-channels were eliminated. Results showed that the eight-channel model provided estimates for the majority of output variables that did not differ substantially from the 14-channel model, except in instances in which muscle force output was ramped to resist flexion moments. Estimates of the output variables were, in general, improved when multifidus fascicles were re-added to the model and driven from the lumbar erector spinae EMG sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号