首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过粘度和透光率测定以及DSC分析比较了692、748、2021及xs704等4种稀释剂对BPA型环氧树脂188EL的稀释效果及其对树脂及固化物性能的影响。结果表明,稀释剂添加质量分数每增加1%,固化物Tg降低1~2℃。692对环氧188EL的稀释效果最明显,2021因其分子中含有特殊的六元环结构和双环氧基团,对固化物Tg及耐腐蚀性影响最小。  相似文献   

2.
张黎芳  李穆 《广东化工》2016,(16):74-76
通过测试粘度、凝胶时间、固化放热、Tg、力学性能分析比较了BGE、AGE、1,4-BDDGE、PPGDGE四种稀释剂对BPA型环氧树脂128的粘度、及对128/IPDA体系反应速率和固化物性能的影响。结果表明,同类稀释剂链长越短,稀释效果越好;随着稀释剂用量的增多,BPA环氧树脂粘度降低,但超过15%时,粘度逐步趋于稳定;且随着稀释剂用量的增多,凝胶时间延长,固化放热峰值温度降低,Tg降低,力学性能强度先上升后下降,且加入不同的稀释剂,固化物力学性能强度最佳值时,各稀释剂的添加量不一样。  相似文献   

3.
噁唑烷酮改性环氧树脂的性能   总被引:1,自引:0,他引:1  
黄丽  石萌萌  王成忠 《化工进展》2013,(10):2459-2462
采用4,4-二苯基甲烷二异氰酸酯(MDI)对双酚A环氧树脂和脂肪族环氧树脂进行噁唑烷酮化共改性,研究了MDI及作为活性稀释剂的脂肪族环氧用量对改性产物黏度及树脂固化物力学性能、耐热性的影响。结果表明,低改性比和稀释剂可以有效降低唑烷酮改性环氧树脂黏度,当改性比为4∶1时,树脂固化物拉伸强度、弯曲强度达到75.4 MPa和158.2 MPa,分别比环氧树脂固化物提高了64%和57%,断裂延伸率和冲击强度有较大提高,具有高强高韧的特点。稀释剂含量对Tg影响较小,各改性树脂Tg在108~118℃之间,与纯环氧树脂的耐热性相当。  相似文献   

4.
以双酚A型环氧树脂、丙烯酸为单体,采用自由基溶液聚合法合成了双酚A型环氧丙烯酸酯低聚物。采用双酚A型环氧丙烯酸酯为光敏树脂低聚物基体,二苯甲酮为光引发剂,二溴新戊基二醇乙烯丙基醚为活性稀释剂,二氧化硅为填料,制备了三维打印用双酚A型环氧丙烯酸酯光敏树脂。通过测试光敏树脂的固化时间、黏度、固化收缩率和力学性能,研究了光敏树脂各组分的最佳用量。结果表明:当光引发剂质量分数为8%,稀释剂质量分数为20%,填料质量分数为1.0%时,光敏树脂拉伸强度为15.6 MPa,耐热温度为263.4℃。  相似文献   

5.
以腰果酚合成了一种低粘度、高活性腰果酚含硅缩水甘油醚(SCGE),并将其作为稀释剂改性E-51环氧树脂/甲基六氢苯酐(MeHHPA)体系,通过粘度测试,红外光谱分析,力学性能测试,动态热机械分析(DMA)和断裂面形貌分析考察了SCGE用量对环氧固化物的结构及性能的影响。研究表明,SCGE对E-51树脂具有良好的稀释作用,可显著提高固化物的冲击强度与拉伸强度。当SCGE添加质量分数为15%时,固化物的冲击强度达到最大值17.53 k J/m~2,当SCGE添加质量分数为10%时,固化物的拉伸强度达到最大值73.63 MPa。SCGE对环氧固化物具有显著的增韧作用,但固化物的玻璃化转变温度(Tg)随着SCGE用量的增加有所降低。  相似文献   

6.
本文以苄基缩水甘油醚和丙烯酸为原料合成活性稀释剂苄基缩水甘油醚丙烯酸酯(BGEA),研究了反应温度、催化剂和阻聚剂用量对反应的影响.结果表明最佳的反应条件为:反应温度110℃左右,催化剂N,N’-二甲基苄胺质量分数为0.9%,阻聚剂对甲氧基苯酚质量分数为0.2%.后将BGEA作为稀释剂加入到双酚A型环氧丙烯酸树脂中配制成光固化涂料,利用TG、AFM等表征手段对光固化膜的热性能、表面形貌及物理机械性能进行研究.  相似文献   

7.
根据相似相容的原理,选择结构中含有苯环、环氧基有机硅树脂与双酚A环氧通过物理共混改性,考察有机硅树脂添加比例对固化物性能的影响。实验结果表明该苯基环氧有机硅树脂在环氧/酸酐固化体系中有很好的相容性,有机硅树脂加入使固化体系Tg降低、韧性提高、Td升高。有机硅树脂含量为30%固化体系Tg降低15℃、冲击强度提高49. 5%、80%loss温度提高67℃。  相似文献   

8.
丙烯酸松香环氧树脂预聚体的合成与性能研究   总被引:2,自引:0,他引:2  
通过丙烯酸松香与丁二醇二缩水甘油醚酯化反应合成了环氧树脂预聚体。探讨了反应温度、催化剂用量等因素对反应的影响,得到了最佳反应条件:三乙胺质量分数0.03%(以丙烯酸松香质量计),反应温度130℃,反应时间5 h。预聚体的环氧值0.19 mol/100 g,黏度15.7 Pa.s(36℃),酸值(KOH)0.6 mg/g。采用DSC结合FT-IR研究了固化物性能,结果表明,以甲基六氢苯酐(MeHHPA)为固化剂,m(预聚体):m(MeHHPA)=10∶8,固化条件为100℃/2 h+170℃/5 h时,固化物的Tg最高,为37.2℃。  相似文献   

9.
NR/NBR/环氧化天然橡胶共混物的动态力学性能   总被引:8,自引:4,他引:8       下载免费PDF全文
研究了对叔丁基酚醛树脂用量对NR/NBR/环氧化天然橡胶(ENR)共混物动态力学性能的影响。加对叔丁基酚醛树酯的NR/NBR/ENR共混物有2个动态力学损耗峰(分别对应共混物的玻璃化转变温度Tg1和Tg2)。随着对叔丁基酚醛树脂用量(0-15份)增大,共混物的Tg1基本不变,Tg2则逐渐升高;温度为Tg1的共混物损耗因子(tanδ)峰值化不大,温度为Tg2的共混物tanδ峰值则逐渐增大。通过调节对叔丁基酚醛树脂用量可以改变共混物在0和65℃附近的tanδ值,从而获得抗湿滑性能好、滚动损失小的新型胎面材料。  相似文献   

10.
用差示扫描量热仪(DSC)、傅立叶交换红外光谱(FT-IR)对不同配比的低溴环氧/氰酸酯树脂的共固化反应机理以及固化物的结构特征进行了研究,同时测定和讨论了其层压板的耐热性和介电性能等。研究结果表明,在低溴环氧/氰酸酯树脂的固化体系中,氰酸酯和环氧树脂通过两种途径反应最终生成噁唑烷酮结构:固化反应温度与体系的组成有关,体系中低溴环氧树脂减少固化反应温度降低:加入催化剂能明显促进体系共固化反应,同时也降低了层压板的耐热性和介电性能。在性能方面,低溴环氧树脂中加入氰酸酯使共固化物耐热性增加、Tg升高,但氰酸酯用量增加到一定范围后,低溴环氧树脂/氰酸酯配比对Tg影响不大;低溴环氧树脂/氰酸酯层压板的耐热性和介电性能在一定实验范围内随着氰酸酯用量的增加明显提高。  相似文献   

11.
在以环氧树脂(EP)部分环氧基团与丙烯酸反应制得的环氧丙烯酸酯(EA)中,加入经稀释剂溶解的低相对分子质量聚酰胺650(PA650),搅拌制得具有良好柔韧性的光固化涂料预聚物,讨论了PA650用量对涂料柔韧性、硬度及附着力的影响.结果表明:当PA650质量分数为3%时,采用质量分数为1%的二苯甲酮(BP)和0.5%的光引发剂复合引发固化,涂膜附着力达到1级,柔韧性棒轴直径为2 mm,硬度为B级;热失重分析(TGA)显示固化涂膜的热分解转折温度为324℃,比EA固化涂膜的热分解转折温度高,95%热分解温度为335℃,比EA的高.  相似文献   

12.
张宇  孙煜 《工程塑料应用》2021,49(3):140-144
选用有机–无机纳米杂化材料乙烯环氧基多面体低聚倍半硅氧烷(EOVS)和环氧醚基多面体低聚倍半硅氧烷(GPOSS)为改性剂,与4,4′-二氨基二苯甲烷环氧树脂共混制得不同改性剂质量分数(树脂与改性剂总质量的百分数)的EOVS或GPOSS改性环氧树脂,考察了改性树脂的固化反应程度、玻璃化转变温度(Tg)和热稳定性。结果表明,当EOVS或GPOSS的质量分数为1%时,两种改性树脂的固化交联程度和Tg最高,Tg比未改性树脂分别提高了9.18℃和11.51℃;当EOVS质量分数为5%或GPOSS质量分数为1%时,改性树脂的热失重5%温度比未改性树脂提高6.24℃和8.1℃。在笼形结构的空间位阻和Si—O、Si—C等高键能化学键的综合作用下,多面体低聚倍半硅氧烷的引入可提高环氧树脂的热性能。  相似文献   

13.
以亚麻籽油为原料,先合成环氧亚麻籽油,后用丙烯酸开环环氧亚麻籽油,得到一种基于亚麻籽油的可紫外光固化的预聚物,再加入活性稀释剂制得UV固化膜。讨论活性稀释剂用量对光固化膜性能的影响。结果表明,随着稀释剂含量增加,膜的断裂伸长率呈下降趋势;弹性模量、拉伸强度、热稳定性以及铅笔硬度和凝胶含量呈上升趋势;光泽度和吸水率无明显变化,附着力良好。  相似文献   

14.
新型环氧树脂增韧稀释剂的性能研究   总被引:4,自引:0,他引:4  
采用国产669环氧稀释剂与聚氨酯预聚物反应合成了含有端环氧基聚醚氨酯的环氧树脂增韧稀释剂(U669)。将该化合物与环氧树脂(E51)共混,并分别采用氰乙基化己二胺和593#固化,通过力学性能测试,研究了U669含量对固化物性能的影响,并采用扫描电镜观察了断面微观结构。结果发现:其固化物具有海岛结构;2种固化体系的剪切强度在E51/U669质量比为60/40时达到极值,分别为21.91MPa和16.21MPa;采用593#作固化剂,在E51/U669质量比为80/20时,共混固化物的拉伸强度和弯曲强度达到最大值62.63MPa和97.37MPa;采用氰乙基化己二胺固化的体系的断裂伸长率和冲击性较593#固化体系好,其最大断裂伸长率达120.98%,当U669质量分数大于50%时,固化物具有弹性体的特征。  相似文献   

15.
将玉米秸秆木质素与双酚A环氧树脂混合,于100℃下预处理1 h,以改善环氧树脂的性能。对预处理后环氧树脂的黏度进行了测试,对改性环氧树脂与聚酰胺固化后材料的力学性能、动态力学性能、热稳定性以及燃烧性能进行了综合测试,考察了不同质量分数的玉米秸秆木质素对改性环氧树脂性能的影响。结果表明:以固化体系的总质量为基准,在w(木质素)=0~7%的范围内,与未添加木质素的环氧树脂相比,随着木质素质量分数的增加,改性环氧树脂22℃下的黏度从1 220 m Pa·s增大到13 220 m Pa·s;改性环氧树脂固化物的弯曲强度随木质素质量分数的增加先升高后降低,在w(木质素)=3%时达到最大值83.2 MPa,但其冲击强度下降,由20.7 MPa降低为13.6 MPa;改性环氧树脂固化物的玻璃化转变温度(Tg)随木质素质量分数的增加而增加,w(木质素)=5%时Tg提高了4.8℃;改性环氧树脂固化物的热稳定性有所改善,w(木质素)=7%时热失重50%的温度提高13℃,同时木质素的加入能够改善环氧树脂的阻燃性能。  相似文献   

16.
环氧树脂由于其优异的性能被广泛应用于各个领域。然而,环氧树脂较高的黏度与反应活性限制了实际生产中的加工窗口。以线性酚醛树脂作为固化剂,正丁基缩水甘油醚(BGE)为活性稀释剂,构筑了低黏度高性能环氧/酚醛树脂体系,并考察添加不同量的BGE对环氧/酚醛树脂体系黏度、固化反应以及力学性能的影响。结果表明,随着稀释剂质量分数的增加,体系黏度显著降低,而压缩强度先增加后降低。当稀释剂质量分数为30%时,体系黏度为110 m Pa·s,与未加稀释剂体系相比降低了99%,同时压缩强度达到最大,为134.11 MPa,与未加稀释剂体系相比提高了30%。通过差示扫描量热分析对固化动力学进行了研究,并推测了该混合体系的固化机理。  相似文献   

17.
环氧固化体系的干燥时间与固化促进剂用量以及固化的环境温度密切相关。随着固化促进剂用量的增加,体系的干燥性能逐步得到提升。本文解析了固化促进剂DMP-30的作用机理并用红外谱图法表征了微观反应过程,并且通过对DMP-30在-15℃到5℃的低温固化条件下对环氧固化体系干燥性能的影响,以及不同的DMP-30加入量对体系机械性能影响的研究,结合考察环氧活性稀释剂对降低环氧固化体系粘度的作用,最终得出了环氧体系中较为合适的环氧促进剂加入量和环氧稀释剂的种类。  相似文献   

18.
UV涂料对光纤附加光衰减的影响   总被引:1,自引:0,他引:1  
采用双酚A环氧丙烯酸酯(EA)和聚氨酯丙烯酸酯(PUA)共混,加入活性稀释剂、光引发剂、颜料等制备了紫外光固化光纤涂料。讨论了EA与PUA的配比,预聚物与活性稀释剂的配比以及光引发剂及颜料的含量对光纤带附加光衰减的影响。结果表明:当EA/PUA为1∶1.5(质量比),预聚物质量分数为52%,活性稀释剂质量分数为28%,光引发剂质量分数为14%,颜料质量分数为1.5%时,光纤具有最小的附加光衰减值。  相似文献   

19.
通过聚氨酯丙烯酸酯(PUA)预聚物中的端-NCO与双酚F型环氧丙烯酸酯(BPF-EA)低聚物中的侧-OH反应,制备了一种光活性聚氨酯改性环氧丙烯酸酯(PMEA)低聚物。将两种低聚物与活性稀释剂以及光引发剂均匀混合并进行了UV固化。研究了EA和PMEA低聚物及固化膜的性能。结果表明,制备的BPF-EA低聚物与自制的双酚A型环氧丙烯酸酯低聚物相比黏度大幅下降。EA和PMEA固化膜具有高的交联密度、良好的附着力以及优异的耐化学品性能。由于PUA预聚物的引入,聚合物链中具有一定量的柔性基团,PMEA固化膜的铅笔硬度、热稳定性和拉伸强度略有下降,断裂伸长率明显增加。固化膜的柔韧性变好。其中,以20%(质量分数)TPGDA为稀释剂配制的UV固化涂料,固化膜的综合性能最好。  相似文献   

20.
以4,4′-二氨基二苯基砜(DDS)为固化剂,用新型联苯芳酯型液晶环氧树脂[4,4′-双(4-羟基苯甲氧基)-3,3′,5,5′-四甲基联苯二缩水甘油醚](DGE-BHBTMBP)改性普通双酚A型环氧树脂(E-51),通过动态热机械性能分析、热重分析及扫描电子显微镜测试了DGE-BHBTMBP含量对DGE-BHBTMBP/E-51/DDS固化物的热性能和力学性能的影响。结果表明,加入DGE-BHBTMBP的E-51/DDS固化物的玻璃化转变温度(Tg)和初始分解温度都有所提高。加入质量分数为20%的DGE-BHBTMBP可使固化物的Tg和初始分解温度分别提高44℃和21.86℃。当其质量分数为4%时,固化物的力学性能明显提高,冲击强度和弯曲强度分别提高了136%和9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号