首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 256 毫秒
1.
The growth potential of any state is linked with infrastructure and electricity infrastructure is the most important parameter for economic growth. Maharashtra, a prominent state in India consumes 12 per cent of India's electricity. Maharashtra's power sector is facing the electricity deficit and shortage since early 2005. On the other hand, industrial and service sectors are rising in the state. The present paper discusses electricity situational analysis of the state. Electricity demand analysis has been presented and comparison of state electricity demand vis-à-vis Mumbai's demand (state capital) has been carried out for two years. Variation for monthly average demand for two years and load shedding have also been analyzed. Power supply situation analysis and analysis of major power suppliers have been carried out. The State Load Distribution Center data is used to depict the load variation for a typical day. Interventions needed to sustainably meet the growing demands are also discussed.  相似文献   

2.
It is commonly assumed that dispatch of micro-combined heat and power (micro-CHP) should be heat driven, where the unit turns on when a heat load is present, and turns off or modulates when there is little or no heat demand. However, this heat led operating strategy—typical of large-scale CHP applications—may not be economically justified as scale decreases. This article investigates cost-effective operating strategies for three micro-CHP technologies; Stirling engine, gas engine, and solid oxide fuel cell (SOFC), under reasonable estimates of energy prices. The cost of meeting a typical UK residential energy demand is calculated for hypothetical heat led and electricity led operating strategies, and compared with that of an optimal strategy. Using central estimates of price parameters, and with some thermal energy storage present in the system, it is shown that the least cost operating strategy for the three technologies is to follow heat and electricity load during winter months, rather than using either heat demand or electricity demand as the only dispatch signal. Least cost operating strategy varies between technologies in summer months. In terms of environmental outcomes, the least cost operating strategy does not always result in the lowest carbon dioxide emissions. The results obtained are sensitive to electricity buy-back rate.  相似文献   

3.
In Australia, residential electricity peak demand has risen steeply in recent decades, leading to higher prices as new infrastructure was needed to satisfy demand. One way of limiting further infrastructure-induced retail price rises is via ‘cost-reflective’ electricity network pricing that incentivises users to shift their demand to non-peak periods. Empowering consumers with knowledge of their energy usage is critical to maximise the potential benefits of cost-reflective pricing. This research consulted residential electricity consumers in three Australian states on their perceptions and acceptance of two cost-reflective pricing scenarios (Time-of-Use and Peak Capacity pricing) and associated technologies to support such pricing (smart meters, in-home displays and direct load control devices). An energy economist presented information to focus groups on the merits and limitations of each scenario, and participants’ views were captured. Almost half of the 53 participants were agreeable to Time-of-Use pricing, but did not have a clear preference for Peak Capacity pricing, where the price was based on the daily maximum demand. Participants recommended further information to both understand and justify the potential benefits, and for technologies to be introduced to enhance the pricing options. The results have implications for utilities and providers who seek to reduce peak demand.  相似文献   

4.
The energy used for building operations, the associated greenhouse gas emissions, and the uncertainties in future price of natural gas and electricity can be a cause of concern for building owners and policy makers. In this work we explore the potential of building-scale alternative energy technologies to reduce demand and emissions while also shielding building owners from the risks associated with fluctuations in the price of natural gas and grid electricity. We analyze the monetary costs and benefits over the life cycle of five technologies (photovoltaic and wind electricity generation, solar air and water heating, and ground source heat pumps) over three audience or building types (homeowners, small businesses, large commercial and institutional entities). The analysis includes a Monte Carlo analysis to measure risk that can be compared to other investment opportunities. The results indicate that under government incentives and climate of Toronto, Canada, the returns are relatively high for small degrees of risks for a number of technologies. Ground source heat pumps prove to be exceptionally good investments in terms of their energy savings, emission, reductions, and economics, while the bigger buildings tend also to be better economic choices for the use of these technologies.  相似文献   

5.
There are no discrepancies about the advantages of achieving a sustainable energy system based on locally available natural resources. However, supporters of green energy generation system were lacking some scientific and consistent study to defend their proposals. In order to have such a study, Greenpeace commissioned Technology Research Institute at the Pontificia Comillas University to carry out a study to assess ceilings for the potential and generation of renewable technologies in Spain. It demonstrates firstly a far greater renewable potential than the targets set by long term policies, and secondly, the viability of meeting the entire electricity demand projected for 2050. GIS was used to add the geographical dimension to the original project in order to generate a technical analysis linked to the specific constrictions imposed by territory (natural and anthropogenic) and not just designed to cover a certain demand. Therefore, GIS spatial analysis took into account local conditions producing a more accurate assessment than evaluations made upon “virtual” electrical spaces. This approach could be applied to other small scale general studies in order to assess the maximum contribution of renewable energy sources to particular energy generation mix and to help set development policies supporting high participation of renewable technologies.  相似文献   

6.
Electricity sector is among the key users of natural gas. The sustained electricity deficit and environment policies have added to an already rising demand for gas. This paper tries to understand gas demand in future from electricity sector. This paper models the future demand for gas in India from the electricity sector under alternative scenarios for the period 2005–2025, using bottom-up ANSWER MARKAL model. The scenarios are differentiated by alternate economic growth projections and policies related to coal reforms, infrastructure choices and local environment. The results across scenarios show that gas competes with coal as a base-load option if price difference is below US $ 4 per MBtu. At higher price difference gas penetrates only the peak power market. Gas demand is lower in the high economic growth scenario, since electricity sector is more flexible in substitution of primary energy. Gas demand reduces also in cases when coal supply curve shifts rightwards such as under coal reforms and coal-by-wire scenarios. Local environmental (SO2 emissions) control promotes end of pipe solutions flue gas de-sulfurisation (FGD) initially, though in the longer term mitigation happens by fuel substitution (coal by gas) and introduction of clean coal technologies integrated gasification combined cycle (IGCC).  相似文献   

7.
For this study, a spatially and temporally resolved optimization model was used to investigate and economically evaluate pathways for using surplus electricity to cover positive residual loads by means of different technologies to reconvert hydrogen into electricity. The associated technology pathways consist of electrolyzers, salt caverns, hydrogen pipelines, power cables, and various technologies for reconversion into electricity. The investigations were conducted based on an energy scenario for 2050 in which surplus electricity from northern Germany is available to cover the electricity grid load in the federal state of North Rhine-Westphalia (NRW).A key finding of the pathway analysis is that NRW's electricity demand can be covered entirely by renewable energy sources in this scenario, which involves CO2 savings of 44.4 million tons of CO2/a in comparison to the positive residual load being covered from a conventional power plant fleet. The pathway involving CCGT (combined cycle gas turbines) as hydrogen reconversion option was identified as being the most cost effective (total investment: € 43.1 billion, electricity generation costs of reconversion: € 176/MWh).Large-scale hydrogen storage and reconversion as well as the use of the hydrogen infrastructure built for this purpose can make a meaningful contribution to the expansion of the electricity grid. However, for reasons of efficiency, substituting the electricity grid expansion entirely with hydrogen reconversion systems does not make sense from an economic standpoint. Furthermore, the hydrogen reconversion pathways evaluated, including large-scale storage, significantly contribute to the security of the energy supply and to secured power generation capacities.  相似文献   

8.
Demand side management: Benefits and challenges   总被引:1,自引:0,他引:1  
In this paper, the major benefits and challenges of electricity demand side management (DSM) are discussed in the context of the UK electricity system. The relatively low utilisation of generation and networks (of about 50%) means that there is significant scope for DSM to contribute to increasing the efficiency of the system investment. The importance of the diversity of electricity load is discussed and the negative effects of DSM on load diversity illustrated. Ageing assets, the growth in renewable and other low-carbon generation technologies and advances in information and communication technologies are identified as major additional drivers that could lead to wider applications of DSM in the medium term. Potential benefits of DSM are discussed in the context of generation and of transmission and distribution networks. The provision of back-up capacity by generation may not be efficient as it will be needed relatively infrequently, and DSM may be better placed to support security. We also present an analysis of the value of DSM in balancing generation and demand in a future UK electricity system with significant variable renewable generation. We give a number of reasons for the relatively slow uptake of DSM, particularly in the residential, commercial and small business sectors. They include a lack of metering, information and communication infrastructure, lack of understanding of the benefits of DSM, problems with the competitiveness of DSM when compared with traditional approaches, an increase in the complexity of system operation and inappropriate market incentives.  相似文献   

9.
Brazil has to expand its power generation capacities due to significant projected growth of demand. The government aims at adding hydropower capacities in North–Brazil, additional to wind and thermal power generation. However, new hydropower may affect environmentally and socially sensitive areas in the Amazon region negatively while thermal power generation produces greenhouse gas emissions. We therefore assess how future greenhouse gas emissions from electricity production in Brazil can be minimized by optimizing the daily dispatch of photovoltaic (PV), wind, thermal, and hydropower plants. Using a simulation model, we additionally assess the risk of loss of load. Results indicate that at doubled demand in comparison to 2013, only 2% of power production has to be provided by thermal power. Existing reservoirs of hydropower are sufficient to balance variations in renewable electricity supply at an optimal mix of around 37% of PV, 9% of wind, and 50% of hydropower generation. In a hydro-thermal only scenario, the risk of deficit increases tenfold, and thermal power production four-fold. A sensitivity analysis shows that the choice of meteorological data sets used for simulating renewable production affects the choice of locations for PV and wind power plants, but does not significantly change the mix of technologies.  相似文献   

10.
The main aim of this study is to compare how specific conditions in certain countries (in this case, the UK and Sweden) can stimulate or oblige householders to be more energy efficient, or can obstruct this. European goals for energy and emission reductions now constitute the main frame for long-term energy policy changes, but national governments develop and implement policy in contrasting ways and in different contexts. Important aspects are: geographical context, degree of liberalisation of electricity and gas industry, structure and composition of energy systems, metering and billing infrastructure, and the nature of electrical load problems. The following conditions are described and compared in this paper: (1) regulation to control residential consumption and emissions; (2) energy systems; (3) electricity pricing; (4) the role of utilities and other agents in residential demand reduction; (5) quality of feedback on energy use to the householder; and (6) customer behaviour and perceptions of energy use. The analysis is carried out with a view to ecological, economic and social aspects of energy systems. The comparison shows the significance of factors that are sometimes overlooked when considering the potential for demand reduction and load management, and produces some lessons and questions that are widely applicable.  相似文献   

11.
The deployment of small‐scale renewable energy technologies affects the electricity grid depending on the local resource potential as well as on the regional composition of consumers. Spatially explicit renewable energy supply data and spatially disaggregated load profiles of consumers are usually not available to modellers. These data are, however, necessary to better account for the particularities of electricity systems with high levels of distributed renewable production. We present a methodology to estimate the load profile for the distribution grid of household and commercial consumers at 1 km pixel resolution for Austria. Consequently, we combine statistical data on the distribution of electricity consumers with standardized load profiles. Additionally, we present a model that allows allocating theoretical transformers to pixels allowing constructing proxy microgrids. We validate the load generation methodology for three different days and seasons. Hence, we use recently measured load profiles from the federal state of Vorarlberg. The proxy microgrids are validated using data on transformer locations from the federal state of Upper Austria. The modelling approach allows reproducing the historically measured load profiles and the number and location of transformers in the distribution grid with reasonable accuracy. The validation results show that about 80–91% of the variance of the modelled demand data can be explained by the variance of the measured data. In addition, about 78% of the transformer locations can be replicated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A low‐carbon electricity supply for Australia was simulated, and the installed capacity of the electrical grid was optimized by shifting the electricity demand of residential electric water heaters (EWHs). The load‐shifting potential of Australia was estimated for each hour of the simulation period using a nationwide aggregate EWH load model on a 90 × 110 raster grid. The electricity demand of water heaters was shifted from periods of low renewable resource and high demand to periods of high renewable resource and low demand, enabling us to effectively reduce the installed capacity requirements of a 100%‐renewable electricity grid. It was found that by shifting the EWH load by just 1 hour, the electricity demand of Australia could be met using purely renewable electricity at an installed capacity of 145 GW with a capacity factor of 30%, an electricity spillage of 20%, and a generation cost of 15.2 ¢/kWh. A breakdown of the primary energy sources used in our scenario is as follows: 43% wind, 29% concentrated solar thermal power, and 20% utility photovoltaic. Sensitivity analysis suggested that further reduction in installed capacity is possible by increasing the load‐shifting duration as well as the volume and insulation level of the EWH tank.  相似文献   

13.
The increasing penetration of variable renewable energy, such as wind and solar, requires the deployment of large scale energy storage or dynamic demand side management. Leveraging the intrinsic energy storage potential of certain electric loads could be the key for an efficient transition to green power generation.Plug-in electric vehicles (PEVs) are about to be introduced on a large scale. In this paper, we investigate the savings potential of electricity retailers resulting from the ability to control the charging behavior of a fleet of PEVs using Information and Communication Technology (ICT). This savings potential is important as it could jumpstart the development of advanced control infrastructures for dynamic demand side management.The paper makes three major contributions: first, it applies a novel car usage model based on data from the National Household Travel Survey (NHTS). Second, it develops and evaluates several charging scheduling algorithms with low computational requirements. Third, it identifies several key parameters influencing the relative and absolute savings potential of ICT-controlled PEV charging.We obtain a relative savings potential of up to 45%. The absolute yearly savings per PEV, however, are rather small, which could limit the economic incentives of electricity retailers to deploy the required infrastructure.  相似文献   

14.
To improve the reliability of sectoral mitigation potential and cost analysis, this paper made an in-depth exploration into China’s electricity sector’s thermal efficiency and inner structure. It is found that unlike what many literatures portray, China is actually among the world’s leaders in coal-fired power plants’ generating efficiencies; besides, although there are still numerous small and inefficient generating units in the current generation fleet, many of them are in fact playing important roles in supporting local economic development, meeting peak load needs, balancing heat and electricity supply and providing job opportunities to the local economy, therefore their existence does not necessarily mean low-cost mitigation potential. Given the efficiency and structural characteristics of China’s electricity sector, it is pointed out that some other mitigation options, such as demand side management, IGCC and renewable energy as well as the break-through of CCS technology may play an even more important role in emission reduction. Considering the significant lock-in effects in electricity sector, it is warned that China, if continues putting majority investment in large and advanced coal-fired generating units, will face another round of chasing-after for the new and advanced renewable generation technologies. Therefore China should put more efforts in renewable generation technologies now.  相似文献   

15.
A strategy to enable zero-carbon variable electricity production with full utilization of renewable and nuclear energy sources has been developed. Wind and solar systems send electricity to the grid. Nuclear plants operate at full capacity with variable steam to turbines to match electricity demand with production (renewables and nuclear). Excess steam at times of low electricity prices and electricity demand go to hybrid fuel production and storage systems. The characteristic of these hybrid technologies is that the economic penalties for variable nuclear steam inputs are small. Three hybrid systems were identified that could be deployed at the required scale. The first option is the gigawatt-year hourly-to-seasonal heat storage system where excess steam from the nuclear plant is used to heat rock a kilometer underground to create an artificial geothermal heat source. The heat source produces electricity on demand using geothermal technology. The second option uses steam from the nuclear plant and electricity from the grid with high-temperature electrolysis (HTR) cells to produce hydrogen and oxygen. Hydrogen is primarily for industrial applications; however, the HTE can be operated in reverse using hydrogen for peak electricity production. The third option uses variable steam and electricity for shale oil production.  相似文献   

16.
New power generation technologies are expected to reduce various environmental impacts of providing electricity to urban regions for some investment cost. Determining which power generation technologies are most suitable for meeting the demand of a particular region requires analysis of tradeoffs between costs and environmental impacts. Models simulating different power generation technologies can help quantify these tradeoffs. An Internet‐based modelling infrastructure called DOME (distributed object‐based modelling environment) provides a flexible mechanism to create integrated models from independent simulation models for different power generation technologies. As new technologies appear, corresponding simulation models can readily be added to the integrated model. DOME was used to combine a simulation model for hybrid SOFC (solid oxide fuel cell) and gas turbine system with a power generation capacity and dispatch optimization model. The integrated models were used to evaluate the effectiveness of the system as a centralized power source for meeting the power demand in Japan. Evaluation results indicate that a hybrid system using micro‐tube SOFC may reduce CO2 emissions from power generation in Japan by about 50%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
The decarbonised future European electricity system must remain secure: reliable electricity supply is a prerequisite for the functioning of modern society. Scenarios like Desertec, which partially rely on solar power imports from the Middle East and North Africa, may be attractive for decarbonisation, but raise concerns about terrorists interrupting supply by attacking the long, unprotected transmission lines in the Sahara. In this paper, I develop new methods and assess the European vulnerability to terrorist attacks in the Desertec scenario. I compare this to the vulnerability of today's system and a decarbonisation scenario in which Europe relies on gas imports for electricity generation. I show that the vulnerability of both gas and electricity imports is low, but electricity imports are more vulnerable than gas imports, due to their technical characteristics. Gas outages (and, potentially, resulting blackouts) are the very unlikely consequence even of very high-number attacks against the gas import system, whereas short blackouts are the potential consequence of a few attacks against the import electricity lines. As the impacts of all except extreme attacks are limited, terrorists cannot attack energy infrastructure and cause spectacular, fear-creating outages. Both gas and electricity import infrastructure are thus unattractive and unlikely terrorist targets.  相似文献   

18.
The central ecological area of the Baikal natural territory covers some districts of the Irkutsk oblast and the Republic of Buryatia, located on the coast of the Lake Baikal. Due to the natural uniqueness and special status of doing economic activity, the assessment of the impact on the environment in this territory is very importance.An analysis of the functioning of energy objects showed that a significant part of the territory is provided with a centralized electricity supply with developed electric grid infrastructure. There are only a few remote settlements with autonomous electricity supply from diesel power plants.The main sources of pollution are numerous boiler houses that provide heat to the population, social and administrative institutions. In all, there are 98 heat energy sources in the territory, of which 66 (or 70%) use coal.The problems of environmental pollution are mainly caused by the use of coal in a small boiler house, worn-out equipment, and the lack of an appropriate level of flue gas treatment. The total estimated emission of pollutants into the atmosphere from heat energy sources is estimated at 20–25 thousand tons per year.In order to reduce the anthropogenic impact from energy objects, it is advisable to use renewable energy sources, hydrogen technologies, coal substitution with environmentally friendly fuels, use of electricity for heat energy supply, installation of environmental protection equipment and the implementation of energy-saving measures.The methodological approach and simulation models developed at MESI SB RAS were used to determine the competitiveness conditions of alternative technologies and energy carriers.The studies evaluated the environmental and economic efficiency of energy production technologies by using specific indicators: the capital intensity of reducing 1 ton of emissions and environmental capital return by 1 million rubles for the conditions of the central ecological area.The potential for reducing emissions into the atmosphere by use of renewable energy sources in autonomous energy supply areas is less than 1% of the current level of total emissions from energy objects. The potential for reducing emissions by replacing boiler houses with a capacity of less than 0,2 Gcal/h by a heat pump units is no more than 12%.The biggest environmental effect can be achieved by using alternative energy carriers including hydrogen instead of coal. Moreover, the potential for reducing emissions is 60% of the total emissions. In addition to these activities are the least capital intensive.The most effectively is the replacement of coal with natural gas. Rational gas consumption in the coastal areas of Lake Baikal is estimated at 175–190 thousand tons of equivalent fuel. The real possibility of transferring small boiler houses to gas arises during the construction of an export gas pipeline from Russia (through the territory of the Irkutsk oblast) to China via Mongolia, or by the small-scale production of liquefied natural gas.The most currently implemented direction is the use of electricity for heat energy supply. The potential volume of electricity to replace coal in boiler houses of the central ecological area is 1,3 TWh per year, however, the competitive electricity tariff is estimated less than 2 US c/kWh, which is several times lower than current tariffs.Hydrogen technology is currently very capital-intensive, but using it in a way similar to using electricity for heat eliminates pollutant and greenhouse gas emissions.Now days, there are no effective financial mechanisms aimed at stimulating the reduction of the anthropogenic pressure on the environment from existing energy sources, including for the use of alternative technologies. As the result, significant financial support is required in the form of special cost compensation mechanisms for energy producers and/or consumers.  相似文献   

19.
Natural gas has significant potential carbon benefits over coal when used for electricity generation, but these benefits can be offset by emissions of fugitive methane or delays in the adoption of near-zero carbon technologies. We analyze the time-evolution of radiative forcing from both natural gas and coal-based electricity generation by calculating average radiative forcing over an interval of time from greenhouse gas emissions under a range of assumptions for fugitive methane leakage, electricity generation efficiency, and delays in the adoption of near-zero carbon technologies. We find that leakage rates of between 5.2% and 9.9% are required for natural gas to result in greater mean forcing than coal over the next 100 years. We show that natural gas infrastructure with modest leakage could remain in place for 1.5–2.4 times the time interval that coal generation would have persisted prior to replacement with near-zero carbon technologies before the climate benefits of replacing coal with natural gas are negated. Natural gas can serve a viable bridge away from coal-based generation if avoiding longer-term climate impacts is prioritized, fugitive methane emissions are minimized, and the large-scale transition to near-zero carbon alternatives is unlikely to happen in the near-term.  相似文献   

20.
Jordan has experienced a significant increase of peak load and annual electricity demand within the last years due to economic development and population growth. The experienced growth rates are expected to continue during the next decades, making large investments in new power plant capacity necessary. Additionally, when gas supply from Egypt was interrupted several times and crude oil world market prices increased simultaneously, recent years have shown painfully that a power supply exclusively based on fossil fuel imports is subject to a very high risk and can have a strong negative impact on the national budget. Electricity-sector authorities are therefore looking for suitable solutions to keep up with the increasing electricity demand, to make Jordan more independent from fossil fuel imports, and to provide electricity at reasonable prices in the future. This paper presents a methodology for the optimized integration of renewable energy (RE) technologies into Jordan's existing power plant portfolio. The core of the methodology is the mixed integer linear optimization program REMix-CEM, developed at the German Aerospace Center (DLR), which optimizes capacity expansion and unit commitment of RE and conventional power generation technologies simultaneously. After describing Jordan's electricity sector and the available RE resources, the developed methodology and the results are presented. The paper shows that by the year 2022, Jordan could generate at least 47% of its electricity demand by a well-balanced mix of concentrating solar power, utility-scale photovoltaics, and onshore wind power. This scenario would maintain the security of electricity supply, absorb present growth rates of power generation costs, and make Jordan significantly more independent of fossil fuel imports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号