首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
金纳米粒子以它独特的光学、电学和催化性质以及在纳米级电子线路中的应用潜力,受到人们越来越多的关注.本文主要评述了金纳米粒子的合成方法和自组装技术,即对各种制备方法和自组装的特点、纳米粒子的生长机理和自组装机理进行了介绍.展望了金纳米材料未来的研究方向和发展趋势.  相似文献   

3.
4.
Divalent DNA-AuNP (gold nanoparticle) conjugates comprising two DNA strands at diametrically opposed positions are prepared. Highly linear 1D and tetragonal lattice-like 2D AuNP arrays are constructed using the conjugates and DNA assemblies based on T- and double-crossover motifs and the Holliday junction.  相似文献   

5.
6.
7.
8.
9.
10.
Gold nanoparticles (AuNPs) endowed with anisotropic DNA valency are an important class of materials, as they can assemble into complex structures with a minimal number of DNA strands. However, methods to encode 3D DNA strand patterns on AuNPs with a controlled number of unique DNA strands in a predesigned spatial arrangement remain elusive. In this work, a simple one‐step method to yield such DNA‐decorated AuNPs is demonstrated, through encapsulating AuNPs into DNA minimal nanocages. The AuNP@DNA cage encapsulation complex inherits the 3D anisotropic molecular information from the DNA nanocage with enhanced structural stability. The DNA nanocage can be further functionalized and used as a building block for the self‐assembly of complex architectures, such as dimers and trimers, programmed assemblies with sequential growth DNA backbones and DNA origami.  相似文献   

11.
12.
13.
14.
15.
A quantitative understanding of the localized surface plasmon resonances (LSPRs) of metallic nanostructures has received tremendous interest. However, most of the current studies are concentrated on theoretical calculation due to the difficulty in experimentally obtaining monodisperse discrete metallic nanostructures with high purity. In this work, endeavors to assemble symmetric and asymmetric gold nanoparticle (AuNP) dimer structures with exceptional purity are reported using a DNA self‐assembly strategy through a one‐step gel electrophoresis, which greatly facilitates the preparation process and improves the final purity. In the obtained Au nanodimers, the sizes of AuNPs (13, 20, and 40 nm) and the interparticle distances (5, 10, and 15 nm) are tunable. The size‐ and distance‐dependent plasmon coupling of ensembles of single, isolated dimers in solution are subsequently investigated. The experimental measurements are correlated with the modeled plasmon optical properties of Au nanodimers, showing an expected resonance shift with changing particle sizes and interparticle distances. This new strategy of constructing monodisperse metallic nanodimers will be helpful for building more complicated nanostructures, and our theoretical and experimental understanding of the intrinsic dependence of plasmon property of metallic nanodimer on the sizes and interparticle distances will benefit the future investigation and exploitation of near‐field plasmonic properties.  相似文献   

16.
17.
Objective: It is difficult to identify the gold nanoparticles (AuNPs) intracellularly due to their non-fluorescent nature. Although gold can quench the fluorescence of any fluorophore, hence it is also difficult to combine gold with a fluorophore such as a semiconductor quantum dots (QDs). The aim of this study was to prepare a single fluorescent stable AuNPs combined with QDs (QDs-Au-NPs) which can be easily detected intracellularly.

Methods: QDs-Au-NPs were prepared via a simple one-step process through controlling the spacing between them using polyethylene glycol (PEG) as space linker in the form of PEGylated QDs. Furthermore, the applicability of this system was evaluated after coating the particles with somatostatin citrate, SST, to active target somatostatin receptors (SSTRs), and identification of the internalized particles via confocal laser scanning spectroscopy.

Results: The results showed that the produced Au shell has a thickness of 2.0?±?0.2?nm and QDs-Au-NPs showed the same fluorescence intensity compared to the unmodified QDs. Additionally, a stable monodisperse QDs-Au-NPs coated with SST were prepared after coating with 11-Mercaptoundecanoic acid. Moreover, cellular uptake study in Human Caucasian breast adenocarcinoma cell lines showed that QDs-Au-SST-NPs could be detected easily using the confocal microscope. In addition, they showed a significant (p?≤?.05) internalization per cell compared to untreated QDs-Au-NPs as detected by flow cytometry.

Conclusion: It could be concluded that the produced QDs-Au-NPs has a strong fluorescence property like QDs which enable them to be easily detected after cells internalization.  相似文献   

18.
Active nanocomposites are created with liquid inclusions that contain plasmonic gold nanoparticles inside a polymeric matrix. The alkylthiol‐coated gold particles are designed to reversible agglomerate at certain temperatures, which changes the plasmonic coupling and thus optical properties. It is found that particles confined to the liquid inclusions inside the active composite retain this capability and cause macroscopic, temperature‐dependent color change of the solid. The transition is fully reversible for at least 100 times and tunable in temperature via particle size and ligand. This method is suitable to “package” responsive dispersion in solid composites to exploit their dynamic properties in materials.  相似文献   

19.
The utilization of supramolecular chemistry, i.e., metal-to-ligand coordination, in the field of nanotechnology is evaluated with respect to 2,2':6',2″-terpyridine, as tridentate metal binding site. Stabilization as well as directed self-assembly of nanometer-sized materials into ordered arrays are the most widely studied targets of current research. Moreover, energy- and/or electron-transfer processes are enabled when redox-active terpyridine complexes are bound to (semi)conducting species (e.g., fullerenes, polyoxometalates)-thus, applications in nanoelectronics and catalysis are currently arising from these hybrid materials. Progress made in these fields, resulting from the marriage of terpyridines (as well as their metal complexes) and nanostructures, is summarized in this Review Article.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号