首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cubic boron nitride (cBN) is a unique synthetic material on account of its high hardness, high wear resistance, excellent cutting edge stability and relative chemical inertness compared to diamond. The introduction of monolayer electroplated cBN wheels replaced the complex pre-grinding wheel preparation work (truing and dressing) of composite cBN wheels and thereby extensively facilitating the application in high-efficiency deep grinding, creep feed grinding, etc. The present work has aimed at developing a precisely controlled brazing technique suitable for bonding the cBN grits to a steel substrate in monolayer form with higher bond strength, larger grit protrusion and more uniform grit distribution compared to that in the currently used galvanically bonded wheels. Experimental investigation have clearly demonstrated the potential of the newly developed brazed wheels under varying grinding conditions for processing materials like bearing steel. Improved capability of these wheels over galvanically bonded wheels could be better recognised during dry grinding at high material removal rate and for large stock removal when galvanically bonded wheels were found to suffer from severe wheel loading in grinding bearing steel and from unusual increase in grinding forces due to grit pullout. Creation of wider inter-grit spaces with strong bonding and uniform grit spacing happened to be the essence of the present brazed cBN wheel.  相似文献   

2.
In this paper, a novel conditioning technique using copper bonded diamond grinding wheels of 91 μm grain size and electrolytic in-process dressing (ELID) is first developed to precisely and effectively condition a nickel-electroplated monolayer coarse-grained diamond grinding wheel of 151 μm grain size. Under optimised conditioning parameters, the super abrasive diamond wheel was well conditioned in terms of a minimized run-out error and flattened diamond grain surfaces of constant peripheral envelope. The conditioning force was monitored by a force transducer, while the modified wheel surface status was in-situ monitored by a coaxial optical distance measurement system. Finally, the grinding experiment on BK7 was conducted using the well-conditioned wheel with the corresponding surface morphology and subsurface damage measured by atomic force microscope (AFM) and scanning electric microscope (SEM), respectively. The experimental result shows that the newly developed conditioning technique is applicable and feasible to ductile grinding optical glass featuring nano scale surface roughness, indicating the potential of super abrasive diamond wheels in ductile machining brittle materials. __________ Translated from Chinese Journal of Mechanical Engineering, 2006, 42(10): 95–101 [译自: 机械工程学报]  相似文献   

3.
Coarse-grained wheels can realize high efficient grinding of optical glass. However, the serious surface and subsurface damage will be inevitably introduced by the coarse-grained wheels. In this paper, the grinding damage of a copper-resin bond coarse-grained diamond wheel with grain size of 150μm was investigated on optical glass BK7. The wheel was first properly trued with a metal bond diamond wheel, then pre-dressing for the wheel and grinding experiments are carried out on a precision grinder assisted with electrolytic in process dressing (ELID) method. The surface roughness (Ra) of ground surface was measured using an atomic force microscope (AFM) and the surface topography were imaged by a white light interferometer (WLI) and the AFM. The subsurface damage level of ground surface was evaluated by means of both MRF spot method and taper polishing-etching method, in term of the biggest depth of subsurface damage, distribution of micro defects beneath the ground surface, the cluster depth of subsurface damage, relationship between subsurface damage (SSD) and PV surface roughness (SR), propagating distance and pattern of cracks beneath the ground surface. Experimental results indicate that a well conditioned copper-resin bond coarse-grained diamond wheel on a precision grinder can generate good surface quality of Ra less than 50nm and good subsurface integrity with SSD depth less than 3.5ε for optical glass BK7.  相似文献   

4.
Metal-bonded superabrasive diamond grinding wheels have superior qualities such as high bond strength, high stability and high grindability. The major problems encountered are wheel loading and glazing, which impedes the effectiveness of the grinding wheel. Electrolytic in-process dressing (ELID) is an effective method to dress the grinding wheel during grinding. The wear mechanism of metal-bonded grinding wheels dressed using ELID is different form the conventional grinding methods because the bond strength of the wheel-working surface is reduced by electrolysis. The reduction of bond strength reduces the grit-depth-of-cut and hence the surface finish is improved. The oxide layer formed on the surface of the grinding wheel experiences macrofracture at the end of wheel life while machining hard and brittle workpieces. When the wheel wear is dominated by macrofracture, the wheel-working surface is free from loaded chips and worn diamond grits. When the oxide layer is removed from the wheel surface, the electrical conductivity of the grinding wheel increases, and that stimulates electrolytic dressing. The conditions applied to the pulse current influence the amount of layer oxidizing from the grinding wheel surface. Longer pulse ‘on’ time increases the wheel wear. Shorter pulse ‘on’ time can be selected for a courser grit size wheel since that type of wheel needs high grinding efficiency. Equal pulse ‘on’ and ‘off’ time is desired for finer grit size wheels to obtain stable and ultraprecision surface finish.  相似文献   

5.
The accurate evaluation of grinding wheel surface topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simulation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distribution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturbance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteristics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface profiler based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective. __________ Translated from Journal of Dalian University of Technology, 2007, 47(3): 358–362 [译自: 大连理工大学学报]  相似文献   

6.
Advanced manufacturing industries need materials with high strength and low weight in the fields of advanced engineering, such as automobiles and aeronautics. Metal matrix composites (MMCs) are one of the advanced engineering materials that meet the above requirements. To enhance the properties of MMCs, researchers added an additional phase of reinforcements into single reinforced MMCs; such developed MMCs are known as hybrid MMCs. The additional phase of reinforcements enhances the properties of MMCs, but simultaneously leads to rapid tool wear and poor machinability. This study developed an innovative hybrid machining process (HMP) consisting of electrical discharge grinding and diamond grinding in such a way that both the processes occur alternately with equal intervals due to the rotation of a slotted abrasive grinding wheel. The performance of the hybrid process was tested on an Al/SiCp/B4Cp work-piece in cut-off grinding mode. The experiments were conducted on an electrical discharge machining machine, which consists of a separate attachment on a vertical column to rotate the wheel. Pulse current, pulse on-time, pulse off-time, wheel RPM, and abrasive grit number were taken as input parameters while material removal rate (MRR) and average surface roughness were taken as output parameters. Result were shown that the HMP gives higher MRR with better surface finish as compared to the constituent processes. Pulse current ranging from 3 A to 21 A, pulse on-time ranging from 30 μs to 200 μs, and pulse off-time ranging from 15 μs to 90 μs were also found to be more suitable for higher MRR, and a wheel RPM at 1300 RPM was more suitable for higher MRR with better surface finish.  相似文献   

7.
Nanogrinding of a fine-grained WC-Co composite was developed to achieve an optical quality surface without further polishing. Direct planar grinding was conducted with a CNC grinding machine using a metal-bond diamond wheel of grit size of 15 μm, under the nanogrinding conditions selected. The ground planar surfaces were examined using laser and optical interferometry, atomic force microscopy, and scanning electron microscopy to measure flatness, surface roughness, and surface integrity as a function of grinding conditions. Damage-free, planar mirror surfaces with a flatness (peak-to-valley, PV) at the submicron scale and surface roughness <5 nm Ra were obtained.  相似文献   

8.
After finishing the precision conditioning of mono-layer nickel electroplated coarse-grained diamond wheels with 151 μm (D151), 91 μm (D91) and 46 μm (D46) grain size, resp., profile and surface grinding experiments were carried out on a five-axis ultra-precision grinding machine with BK7, SF6 optical glasses and Zerodur glass ceramic. A piezoelectric dynamometer was used to measure the grinding forces, while an atomic force microscopy (AFM), white-light interferometer (WLI)) and scanning electron microscope (SEM) were used to characterize the ground surface quality in terms of micro-topography and subsurface damage. Moreover, the wear mechanics of the coarse-grained diamond wheels were analyzed and the grinding ratio was determined as well, in aiming to evaluate the grinding performance with the conditioned coarse-grained diamond wheels. Finally, the grinding results were compared with that of the fine-grained diamond wheels with regard to the ground specimen surface quality, process forces and wheel wear as a function of stock removal. The experimental results show that the precision conditioned coarse-grained diamond wheels can be applied in ductile mode grinding of optical glasses with high material removal rates, low wheel wear rates and no dressing requirement yielding excellent surface finishes with surface roughness in the nanometer range and subsurface damage in the micrometer range, demonstrating the feasibility and applicability of the newly developed diamond grinding technique for optical glasses.  相似文献   

9.
磨削参数对超细硬质合金磨削表面粗糙度的影响   总被引:1,自引:0,他引:1  
在使用金刚石砂轮的平面磨床上对超细硬质合金进行了磨削试验研究。通过扫描电子显微镜观察磨削表面形貌和用表面粗糙度测定仪测量磨削表面粗糙度,分析了磨削参数对超细硬质合金磨削表面粗糙度的影响。研究结果表明,同一切深下,超细硬质合金磨削表面粗糙度随砂轮粒度的增大而增大。采用相同粒度砂轮磨削,切深较小时,超细硬质合金磨削表面粗糙度随切深的增加而增大,当切深增大到一定值后,磨削表面粗糙度值逐渐降低。  相似文献   

10.
刘松  骆明涛  陈宁  吕凌  刘云 《工具技术》2014,48(12):41-43
聚晶金刚石(PCD)刀具由于其自身的高硬度、高耐磨性的特征,使得刃磨加工极易出现崩刃——呈锯齿状刃口的典型缺陷,因此其机械磨削加工较其它刀具材料来看难度更大。本文针对金刚石刀具常用的加工方式——金刚石砂轮机械刃磨展开试验,主要针对金刚石刀片自身材料颗粒度与磨削砂轮粒度这两方面进行研究。通过收集数据,分析对比,研究金刚石材料颗粒度、磨削砂轮粒度对刀具最终刃口质量的影响。  相似文献   

11.
利用真空炉中钎焊的方法 ,用 Ni- Cr合金做钎料 ,适当控制钎焊温度、保温时间和冷却速度 ,实现了金刚石与钢基体间的牢固连接。利用扫描电镜 X射线能谱 ,结合金相及试样逐层的 X射线结构分析 ,剖析了Ni- Cr合金与金刚石和钢基体钎焊界面的微区组织结构 ;揭示了 Ni- Cr合金对金刚石和钢基体表面的浸润和钎焊机理。即在钎焊过程中 Ni- Cr合金中的 Cr元素分离出在金刚石界面形成富 Cr层并与金刚石表面的C元素反应生成 Cr3C2 和 Cr7C3,在钢基体结合界面上Ni- Cr合金和钢基体中的元素相互扩散形成冶金结合 ,这是实现合金层与金刚石和钢基体都有较高结合强度的主要因素。最后重负荷磨削实验表明金刚石为正常磨损 ,没有整颗金刚石脱落。  相似文献   

12.
The accurate evaluation of grinding wheel surface topography, which is necessary for the investigation of the grinding principle, optimism, modeling, and simulation of a grinding process, significantly depends on the accurate recognition of abrasive grains from the measured wheel surface. A detailed analysis of the grain size distribution characteristics and grain profile wavelength of the fine diamond grinding wheel used for ultra-precision grinding is presented. The requirements of the spatial sampling interval and sampling area for instruments to measure the surface topography of a diamond grinding wheel are discussed. To recognize diamond grains, digital filtering is used to eliminate the high frequency disturbance from the measured 3D digital surface of the grinding wheel, the geometric features of diamond grains are then extracted from the filtered 3D digital surface, and a method based on the grain profile frequency characteristics, diamond grain curvature, and distance between two adjacent diamond grains is proposed. A 3D surface profiler based on scanning white light interferometry is used to measure the 3D surface topography of a #3000 mesh resin bonded diamond grinding wheel, and the diamond grains are then recognized from the 3D digital surface. The experimental result shows that the proposed method is reasonable and effective.  相似文献   

13.
The dressing of metal-bonded diamond grinding wheels is difficult despite their availabilities on hard and brittle materials. In this paper, a novel compound technology that combines abrasive waterjet (AWJ) and touch truing is proposed for dressing metal-bonded diamond grinding wheel precisely and efficiently. The dressing experiments of a coarse-grained and a fine-grained bronze-bonded diamond grinding wheel were carried out on a surface grinder with a developed AWJ system. The feasibility of this method was verified by analyzing the wheel runout, the truing forces, and the wheel surface topography. The variations of 3D surface roughness of wheel surface topography during the compound dressing process were quantitatively analyzed. The mechanism of AWJ and touch compound dressing is also discussed. Further, a reaction-bonded silicon carbide block was ground to validate the dressing quality. The experiment results indicate that the grinding wheels that were well dressed by the proposed technique leads to a smaller grinding force and a smaller surface roughness than that of undressed wheels.  相似文献   

14.
Grinding of brittle materials with brazed diamond grinding wheel   总被引:1,自引:1,他引:0  
Brazed diamond grinding tool is the most promising tool, which is fitter for powerful and high-efficiency grinding and may be the substitute of plated one in the future. But the research of the tool on brittle material grinding is still few. In the paper, it has been proved that the tool can achieve much better surface quality than any other tools, though large grit size is used in the tool fabrication. Analysis shows that most brittle material surface quality can be improved with the decrease of depth of cut of single grit, but they cannot be improved further because of some unavoidable surface defects.  相似文献   

15.
Experiments on rotary truing of vitreous bond diamond grinding wheels were conducted to investigate the effects of truing speed ratio, type of diamond in the metal bond truing disks (synthetic versus natural), and diamond grit size in the grinding wheel on the wear of truing disk and on the cylindrical grinding of zirconia. Similar to G-ratio, a new parameter called D-ratio is defined to quantify the wear rate of the diamond truing disks. Experimental results show that, under the same truing condition, the truing disk with blocky, low friability synthetic diamond has a higher D-ratio than the truing disk with natural diamond. Diamond wheels trued by the disk with synthetic diamond also generate lower grinding force and rougher surface finish. High truing disk surface speed, 1.8 times higher than the surface speed of the grinding wheel, was tested and did not show any improvement in D-ratio. This study indicates that μm-scale precision form truing of the vitreous bond diamond wheel is difficult due to excess wear of the metal bond diamond truing disk.  相似文献   

16.
IN SITU TRUING/DRESSING OF DIAMOND WHEEL FOR PRECISION GRINDING   总被引:1,自引:0,他引:1  
An application for achieving on-machine truing/dressing and monitoring of diamond wheel is dealt with in dry grinding. A dry electrical discharge (ED) assisted truing and dressing method is adopted in preparation of diamond grinding wheels. Effective and precise truing/dressing of a diamond wheel is carried out on a CNC curve grinding machine by utilizing an ED assisted diamond dresser. The dressed wheel is monitored online by a CCD vision system. It detects the topography changes of a wheel surface. The wear condition is evaluated by analyzing the edge deviation of a wheel image. The benefits of the proposed methods are confirmed by the grinding experiments. The designed truing/dressing device has high material removal rate, low dresser wear, and hence guarantees a desired wheel surface. Real-time monitoring of the wheel profile facilitates determining the optimum dressing amount, dressing interval, and the compensation error.  相似文献   

17.
An approach for simulation and production implementation of thru-feed centerless grinding of transformation toughened zirconia using vitreous bond diamond grinding wheels is presented. A set of grinding tests was designed and conducted to identify the effects of abrasive product (diamond grit size), work-material, and operational factors (stock removal, thru-feed rate, number of thru-feed passes and truing and dressing methods) on grinding performance. Evaluation parameters of surface finish, grinding forces and C-ratio were utilized to determine machine tool features. Very fine surface finishes, in the order of 0.05 to 0.1 u.m Ra range, could be achieved using vitreous bond micro-grit diamond wheels, without additional part processing. Such a level of surface finish on ground ceramics has traditionally been generated only by using resinoid bonded diamond wheels. These test results were used to design and manufacture a full-size composite or sandwiched diamond grinding wheel. This grinding wheel has been successfully applied in high-volume ceramic production, which in turn has verified the proposed approach. Lastly, the surface finish data is interpreted based on SEM and AFM observations and materials properties.  相似文献   

18.
为实现硅片高质量表面的超精密磨削,研究了5000目、8000目和30 000目金刚石砂轮磨削硅片的表面质量。利用数学模型预测了硅片磨削表面的粗糙度Ra并对预测结果进行了试验验证,分析了硅片磨削表面的形貌特征;通过磨床主轴电机的电流变化对比分析了5000目、8000目和30 000目砂轮磨削过程中的磨削力变化趋势。研究结果表明:8000目砂轮磨削后的单晶硅表面粗糙度Ra小于10 nm,亚表面损伤深度小于150 nm,磨削过程中的磨削力稳定,磨削质量优于5000目砂轮,磨削过程的稳定性优于30 000目砂轮。  相似文献   

19.
Abstract

Experiments on rotary truing of vitreous bond diamond grinding wheels were conducted to investigate the effects of truing speed ratio, type of diamond in the metal bond truing disks (synthetic versus natural), and diamond grit size in the grinding wheel on the wear of truing disk and on the cylindrical grinding of zirconia. Similar to G-ratio, a new parameter called D-ratio is defined to quantify the wear rate of the diamond truing disks. Experimental results show that, under the same truing condition, the truing disk with blocky, low friability synthetic diamond has a higher D-ratio than the truing disk with natural diamond. Diamond wheels trued by the disk with synthetic diamond also generate lower grinding force and rougher surface finish. High truing disk surface speed, 1.8 times higher than the surface speed of the grinding wheel, was tested and did not show any improvement in D-ratio. This study indicates that μm-scale precision form truing of the vitreous bond diamond wheel is difficult due to excess wear of the metal bond diamond truing disk.  相似文献   

20.
The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding,whic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号