首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple correction method to remove the spectral bandpass effects of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the derived normalized water-leaving radiances and ocean-near-surface chlorophyll concentration is developed and implemented in the SeaWiFS data-processing system. SeaWiFS has not only in-band response structures but also significant sensor out-of-band contributions. The effects of the SeaWiFS out-of-band contribution at the green bands is particularly significant for the derived normalized water-leaving radiances and therefore for the retrieved ocean-near-surface chlorophyll concentration. With the sensor spectral bandpass corrections, the low chlorophyll concentration is even lower in the clear ocean regions, whereas there are almost no changes for the oceans with a chlorophyll concentration of >0.2 mg/m(3).  相似文献   

2.
Wang M 《Applied optics》2007,46(9):1535-1547
In the remote sensing of the ocean near-surface properties, it is essential to derive accurate water-leaving radiance spectra through the process of the atmospheric correction. The atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands at 765 and 865 nm (748 and 869 nm for MODIS) for retrieval of aerosol properties with assumption of the black ocean at the NIR wavelengths. Modifications are implemented to account for some of the NIR ocean contributions for the productive but not very turbid waters. For turbid waters in the coastal regions, however, the ocean could have significant contributions in the NIR, leading to significant errors in the satellite-derived ocean water-leaving radiances. For the shortwave infrared (SWIR) wavelengths (approximately > 1000 nm), water has significantly larger absorption than those for the NIR bands. Thus the black ocean assumption at the SWIR bands is generally valid for turbid waters. In addition, for future sensors, it is also useful to include the UV bands to better quantify the ocean organic and inorganic materials, as well as for help in atmospheric correction. Simulations are carried out to evaluate the performance of atmospheric correction for nonabsorbing and weakly absorbing aerosols using the NIR bands and various combinations of the SWIR bands for deriving the water-leaving radiances at the UV (340 nm) and visible wavelengths. Simulations show that atmospheric correction using the SWIR bands can generally produce results comparable to atmospheric correction using the NIR bands. In particular, the water-leaving radiance at the UV band (340 nm) can also be derived accurately. The results from a sensitivity study for the required sensor noise equivalent reflectance, (NE Delta rho), [or the signal-to-noise ratio (SNR)] for the NIR and SWIR bands are provided and discussed.  相似文献   

3.
Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters   总被引:17,自引:0,他引:17  
The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.  相似文献   

4.
The assumption that values of water-leaving radiance in the near-infrared (NIR) are negligible enable aerosol radiative properties to be easily determined in the correction of satellite ocean color imagery. This is referred to as the black pixel assumption. We examine the implications of the black pixel assumption using a simple bio-optical model for the NIR water-leaving reflectance [rho(w)(lambda(NIR))](N). In productive waters [chlorophyll (Chl) concentration >2 mg m(-3)], estimates of [rho(w)(lambda(NIR))](N) are several orders of magnitude larger than those expected for pure seawater. These large values of [rho(w)(lambda(NIR))](N) result in an overcorrection of atmospheric effects for retrievals of water-leaving reflectance that are most pronounced in the violet and blue spectral region. The overcorrection increases dramatically with Chl, reducing the true water-leaving radiance by roughly 75% when Chl is equal to 5 mg m(-3). Relaxing the black pixel assumption in the correction of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite ocean color imagery provides significant improvements in Chl and water-leaving reflectance retrievals when Chl values are greater than 2 mg m(-3). Improvements in the present modeling of [rho(w)(lambda(NIR))](N) are considered, particularly for turbid coastal waters. However, this research shows that the effects of nonzero NIR reflectance must be included in the correction of satellite ocean color imagery.  相似文献   

5.
Gordon HR  Wang M 《Applied optics》1994,33(33):7754-7763
The effects of oceanic whitecaps on ocean-color imagery are simulated and inserted into the proposed Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) atmospheric-correction algorithm to understand its tolerance to error in the estimated whitecap contribution. The results suggest that for wind speeds ? 10-12 m/s, present models that relate whitecap reflectance to wind speed are sufficiently accurate to meet the SeaWiFS accuracy goal for retrieval of the water-leaving radiance in the blue, when the aerosol scattering is weakly dependent on wavelength. In contrast, when the aerosol scattering has a strong spectral signature, the retrievals will meet the goal only when the whitecap reflectance is underestimated.  相似文献   

6.
Ding K  Gordon HR 《Applied optics》1995,34(12):2068-2080
Two satellite-borne ocean-color sensors scheduled for launch in the mid 1990's each have a spectral band (nominally 745-785 nm) that completely encompasses the O(2) A band at 762 nm. These spectral bands are to be used in atmospheric correction of the color imagery by assessment of the aerosol contribution to the total radiance at the sensor. The effect of the O(2) band on the radiance measured at the satellite is studied with a line-by-line backward Monte Carlo radiative transfer code. As expected, if the O(2) absorption is ignored, unacceptably large errors in the atmospheric correction result. The effects of the absorption depend on the vertical profile of the aerosol. By assuming an aerosol profile-the base profile-we show that it is possible to remove most of the O(2)-absorption effects from atmospheric correction in a simple manner. We also investigate the sensitivity of the results to the details of the assumed base profile and find that, with the exception of situations in which there are significant quantities of aerosol in the stratosphere, e.g., following volcanic eruptions or in the presence of thin cirrus clouds, the quality of the atmospheric correction depends only weakly on the base profile. Situations with high concentrations of stratospheric aerosol require additional information regarding vertical structure for this spectral band to be used in atmospheric correction; however, it should be possible to infer the presence of such aerosol by a failure of the atmospheric correction to produce acceptable water-leaving radiance in the red. An important feature of our method for removal of the O(2)-absorption effects is that it permits the use of lookup tables that can be prepared in the absence of O(2) absorption by the use of more efficient radiative transfer codes.  相似文献   

7.
Yan B  Stamnes K  Toratani M  Li W  Stamnes JJ 《Applied optics》2002,41(30):6243-6259
For the atmospheric correction of ocean-color imagery obtained over Case I waters with the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) instrument the method currently used to relax the black-pixel assumption in the near infrared (NIR) relies on (1) an approximate model for the nadir NIR remote-sensing reflectance and (2) an assumption that the water-leaving radiance is isotropic over the upward hemisphere. Radiance simulations based on a comprehensive radiative-transfer model for the coupled atmosphere-ocean system and measurements of the nadir remote-sensing reflectance at 670 nm compiled in the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) database are used to assess the validity of this method. The results show that (1) it is important to improve the flexibility of the reflectance model to provide more realistic predictions of the nadir NIR water-leaving reflectance for different ocean regions and (2) the isotropic assumption should be avoided in the retrieval of ocean color, if the chlorophyll concentration is larger than approximately 6, 10, and 40 mg m(-3) when the aerosol optical depth is approximately 0.05, 0.1, and 0.3, respectively. Finally, we extend our scope to Case II ocean waters to gain insight and enhance our understanding of the NIR aspects of ocean color. The results show that the isotropic assumption is invalid in a wider range than in Case I waters owing to the enhanced water-leaving reflectance resulting from oceanic sediments in the NIR wavelengths.  相似文献   

8.
The polarization correction for the Moderate-Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua satellites is described. The focus is on the prelaunch polarization characterization and on the derivation of polarization correction coefficients for the processing of ocean color data. The effect of the polarization correction is demonstrated. The radiances at the top of the atmosphere need to be corrected by as much as 3.2% in the 412 nm band. The effect on the water-leaving radiances can exceed 50%. The polarization correction produces good agreement of the MODIS Aqua water-leaving radiance time series with data from another, independent satellite-based ocean color sensor, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS).  相似文献   

9.
Yan B  Chen B  Stamnes K 《Applied optics》2002,41(12):2202-2212
Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere--ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.  相似文献   

10.
We present an overview of the vicarious calibration of the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS). This program has three components: the calibration of the near-infrared bands so that the atmospheric correction algorithm retrieves the optical properties of maritime aerosols in the open ocean; the calibration of the visible bands against in-water measurements from the Marine Optical Buoy (MOBY); and a calibration-verification program that uses comparisons between SeaWiFS retrievals and globally distributed in situ measurements of water-leaving radiances. This paper describes the procedures as implemented for the third reprocessing of the SeaWiFS global mission data set. The uncertainty in the near-infrared vicarious gain is 0.9%. The uncertainties in the visible-band vicarious gains are 0.3%, corresponding to uncertainties in the water-leaving radiances of approximately 3%. The means of the SeaWiFS/in situ matchup ratios for water-leaving radiances are typically within 5% of unity in Case 1 waters, while chlorophyll a ratios are within 1% of unity. SeaWiFS is the first ocean-color mission to use an extensive and ongoing prelaunch and postlaunch calibration program, and the matchup results demonstrate the benefits of a comprehensive approach.  相似文献   

11.
The absorption by atmospheric nitrogen dioxide (NO2) gas in the visible has been traditionally neglected in the retrieval of oceanic parameters from satellite measurements. Recent measurements of NO2 from spaceborne sensors show that over the Eastern United States the NO2 column amount often exceeds 1 Dobson Unit (approximately 2.69x10(16) molecules/cm2). Our radiative transfer sensitivity calculations show that under high NO2 conditions (approximately 1x10(16) molecules/cm2) the error in top-of-atmosphere (TOA) reflectance in the blue channels of the sea-viewing wide field-of-view sensor (SeaWiFS) and moderate-resolution imaging spectroradiometer (MODIS) sensors is approximately 1%. This translates into approximately 10% error in water-leaving radiance for clear waters and to higher values (>20%) in the coastal areas. We have developed an atmospheric-correction algorithm that allows an accurate retrieval of normalized water-leaving radiances (nLws) in the presence of NO2 in the atmosphere. The application of the algorithm to 52 MODIS scenes over the Chesapeake Bay area show a decrease in the frequency of negative nLw estimates in the 412 nm band and an increase in the value of nLws in the same band. For the particular scene reported in this paper, the mean value of nLws in the 412 nm band increased by 17%, which is significant, because for the MODIS sensor the error in nLws attributable to the digitization error in the observed TOA reflectance over case 2 waters is approximately 2.5%.  相似文献   

12.
Gordon HR 《Applied optics》2003,42(3):542-4; discussion 545-9
The Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) experience suggests that in most situations the aerosol models presently in use for atmospheric correction of ocean color imagery are sufficient for this task. It has been shown [Appl. Opt. 41, 412 (2002)] that the top-of-atmosphere reflectances computed for more realistic aerosol models differ from those computed for presently used models but have not shown that they will yield a better atmospheric correction, e.g., through direct application to ocean color imagery. Thus they provide no evidence that the presently used aerosol models are inadequate, or that their use is a pitfall in atmospheric correction.  相似文献   

13.
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving radiances in the visible over clear deep ocean areas and cannot easily be modified for retrievals over turbid coastal waters. We have developed an atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses lookup tables generated with a vector radiative transfer code. Aerosol parameters are determined by a spectrum-matching technique that uses channels located at wavelengths longer than 0.86 mum. The aerosol information is extracted back to the visible based on aerosol models during the retrieval of water-leaving radiances. Quite reasonable water-leaving radiances have been obtained when our algorithm was applied to process hyperspectral imaging data acquired with an airborne imaging spectrometer.  相似文献   

14.
Oo M  Vargas M  Gilerson A  Gross B  Moshary F  Ahmed S 《Applied optics》2008,47(21):3846-3859
The recently developed short wave infrared (SWIR) atmospheric correction algorithm for ocean color retrieval uses long wavelength channels to retrieve atmospheric parameters to avoid bright pixel contamination. However, this retrieval is highly sensitive to errors in the aerosol model, which is magnified by the higher variability of aerosols observed over urban coastal areas. While adding extra regional aerosol models into the retrieval lookup tables would tend to increase retrieval error since these models are hard to distinguish in the IR, we explore the possibility that for highly productive waters with high colored dissolved organic matter, an estimate of the 412 nm channel water-leaving reflectance can be used to constrain the aerosol model retrieval and improve the water-leaving reflectance retrieval. Simulations show that this constraint is particularly useful where aerosol diversity is significant. To assess this algorithm we compare our retrievals with the operational SeaWiFS Data Analysis System (SeaDAS) SWIR and near infrared retrievals using in situ validation data in the Chesapeake Bay and show that, especially for absorbing aerosols, significant improvement is obtained. Further insight is also obtained by the intercomparison of retrieved remote sensing reflectance images at 443 and 551 nm, which demonstrates the removal of anomalous artifacts in the operational SeaDAS retrieval.  相似文献   

15.
Chomko RM  Gordon HR 《Applied optics》2001,40(18):2973-2984
We implemented the spectral optimization algorithm [SOA; Appl. Opt. 37, 5560 (1998)] in an image-processing environment and tested it with Sea-viewing Wide Field-of-View Sensor (SeaWiFS) imagery from the Middle Atlantic Bight and the Sargasso Sea. We compared the SOA and the standard SeaWiFS algorithm on two days that had significantly different atmospheric turbidities but, because of the location and time of the year, nearly the same water properties. The SOA-derived pigment concentration showed excellent continuity over the two days, with the relative difference in pigments exceeding 10% only in regions that are characteristic of high advection. The continuity in the derived water-leaving radiances at 443 and 555 nm was also within ~10%. There was no obvious correlation between the relative differences in pigments and the aerosol concentration. In contrast, standard processing showed poor continuity in derived pigments over the two days, with the relative differences correlating strongly with atmospheric turbidity. SOA-derived atmospheric parameters suggested that the retrieved ocean and atmospheric reflectances were decoupled on the more turbid day. On the clearer day, for which the aerosol concentration was so low that relatively large changes in aerosol properties resulted in only small changes in aerosol reflectance, water patterns were evident in the aerosol properties. This result implies that SOA-derived atmospheric parameters cannot be accurate in extremely clear atmospheres.  相似文献   

16.
The NASA Ocean Biology Processing Group's Calibration and Validation Team has analyzed the mission-long Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) on-orbit gain and detector calibration time series to verify that lunar calibrations, obtained at nonstandard gains and radiance ranges, are valid for Earth data collected at standard gains and typical ocean, cloud, and land radiances. For gain calibrations, a constant voltage injected into the postdetector electronics allows gain ratios to be computed for all four detectors in each band. The on-orbit lunar gain ratio time series show small drifts for the near infrared bands. These drifts are propagated into the ocean color data through the atmospheric correction parameter epsilon, which uses the 765/865 nm band ratio. An anomaly analysis of global mean normalized water-leaving radiances at 510 nm shows a small decrease over the mission, while an analysis of epsilon shows a corresponding increase. The drifts in the lunar time series for the 765 and 865 nm bands were corrected. An analysis of the revised water-leaving radiances at 510 nm shows the drift has been eliminated, while an analysis of epsilon shows a reduced drift. For detector calibrations, solar diffuser observations made by the individual detectors in each band allows the response of the detectors to be monitored separately. The mission-long time series of detector calibration data show that the variations in the response of the individual detectors are less than 0.5% over the mission for all bands except the 865 nm band, where the variations are less than 1%.  相似文献   

17.
Contribution of Raman scattering to water-leaving radiance: a reexamination   总被引:1,自引:0,他引:1  
Gordon HR 《Applied optics》1999,38(15):3166-3174
We have reexamined the contribution of Raman scattering to the water-leaving radiance in case 1 waters by carrying out radiative transfer simulations that combine the latest reported measurements of the absorption coefficient of pure water with direct measurements of the spectral variation of the Raman-scattering coefficient. The resulting contribution of Raman scattering is then compared with experimental measurements of the water-leaving radiance, and the fractional contribution of radiance produced by Raman scattering to the total radiance measured at a given wavelength is determined. The results show that (1) the contribution of Raman scattering to the water-leaving radiance in an ocean of pure seawater is as much as 50-100% larger than earlier predictions, and (2) the Raman contribution does not decay as rapidly with increasing concentrations of chlorophyllouslike pigments C as predicted earlier. In fact, the Raman fraction for C 8% at wavelengths of interest in ocean color remote sensing and therefore cannot be ignored in ocean color modeling.  相似文献   

18.
Wang M  Bailey SW 《Applied optics》2001,40(27):4790-4798
For remote sensing of the ocean and atmosphere optical properties, the measurement of radiances affected by sun glint has to be avoided and/or masked out. There are usually no meaningful retrievals in regions significantly contaminated by sun glint. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is capable of operationally tilting the sensor 20 degrees away from nadir to minimize sun glint contamination. The sun glint mask is computed from the Cox and Munk model [J. Opt. Soc. Am. 44, 838-850 (1954)] and applied to the SeaWiFS data. However, sun glint is still a factor near the subsolar point. We present results that demonstrate the effect of sun glint contamination on retrievals of ocean bio-optical and atmospheric products. We show that, although sun glint contamination has a minor effect on retrieved ocean color products, the effect on retrieved atmospheric products, e.g., aerosol optical thickness, is significant. We describe a sun glint correction scheme implemented in the SeaWiFS data-processing system and compare the results with and without sun glint correction. With sun glint correction the derived ocean and atmospheric products are improved. Also, the sun glint masked area can be reduced and therefore can increase significantly the coverage area near the subsolar point.  相似文献   

19.
Chomko RM  Gordon HR 《Applied optics》1998,37(24):5560-5572
When strongly absorbing aerosols are present in the atmosphere, the usual two-step procedure of processing ocean color data-(1) atmospheric correction to provide the water-leaving reflectance (rho(w)), followed by (2) relating rho(w) to the water constituents-fails and simultaneous estimation of the ocean and aerosol optical properties is necessary. We explore the efficacy of using a simple model of the aerosol-a Junge power-law size distribution consisting of homogeneous spheres with arbitrary refractive index-in a nonlinear optimization procedure for estimating the relevant oceanic and atmospheric parameters for case 1 waters. Using simulated test data generated from more realistic aerosol size distributions (sums of log-normally distributed components with different compositions), we show that the ocean's pigment concentration (C) can be retrieved with good accuracy in the presence of weakly or strongly absorbing aerosols. However, because of significant differences in the scattering phase functions for the test and power-law distributions, large error is possible in the estimate of the aerosol optical thickness. The positive result for C suggests that the detailed shape of the aerosol-scattering phase function is not relevant to the atmospheric correction of ocean color sensors. The relevant parameters are the aerosol single-scattering albedo and the spectral variation of the aerosol optical depth. We argue that the assumption of aerosol sphericity should not restrict the validity of the algorithm and suggest an avenue for including colored aerosols, e.g., wind-blown dust, in the procedure. A significant advantage of the new approach is that realistic multicomponent aerosol models are not required for the retrieval of C.  相似文献   

20.
Land PE  Haigh JD 《Applied optics》1997,36(36):9448-9455
In algorithms for the atmospheric correction of visible and near-IR satellite observations of the Earth's surface, it is generally assumed that the spectral variation of aerosol optical depth is characterized by an Angstr?m power law or similar dependence. In an iterative fitting algorithm for atmospheric correction of ocean color imagery over case 2 waters, this assumption leads to an inability to retrieve the aerosol type and to the attribution to aerosol spectral variations of spectral effects actually caused by the water contents. An improvement to this algorithm is described in which the spectral variation of optical depth is calculated as a function of aerosol type and relative humidity, and an attempt is made to retrieve the relative humidity in addition to aerosol type. The aerosol is treated as a mixture of aerosol components (e.g., soot), rather than of aerosol types (e.g., urban). We demonstrate the improvement over the previous method by using simulated case 1 and case 2 sea-viewing wide field-of-view sensor data, although the retrieval of relative humidity was not successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号