共查询到20条相似文献,搜索用时 78 毫秒
1.
以方竹叶为原料,对比乙醇提取、纤维素酶提取、超声辅助乙醇提取、振荡辅助乙醇提取4种提取方式对方竹叶黄酮提取率的影响,通过响应面优化试验确定最优的方竹叶黄酮提取工艺,同时对4种提取方式获得的方竹叶黄酮体外抗氧化能力进行评价。结果表明,超声辅助乙醇提取的黄酮提取率最高,达到(4.06±0.06)%。优化得到方竹叶黄酮最优提取工艺为料液比1∶25(g/mL)、乙醇浓度80%、超声时间112 min、超声温度57℃、超声功率85 W。随着方竹叶黄酮质量浓度增加,不同提取方法所得黄酮的DPPH自由基清除率和Fe3+还原能力均逐渐增强。超声辅助乙醇提取法所得黄酮的抗氧化能力最强。 相似文献
2.
3.
香椿废弃组织中总黄酮提取工艺优化及抗氧化活性研究 总被引:1,自引:0,他引:1
以红油香椿废弃组织为原料,采用超声波辅助溶剂浸提的方法提取黄酮类物质,并利用铁氰化钾还原法、水杨酸比色法和1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)法测定提取物的抗氧化活性。在单因素实验基础上,选择温度、液料比和超声功率为影响因子,以总黄酮得率为响应值,采用响应面法优化提取工艺。结果表明:香椿废弃组织中总黄酮最佳提取工艺为:温度59℃、液料比51 m L/g、超声功率174 W,此条件下总黄酮得率为7.94%。抗氧化活性实验结果表明:香椿废弃组织中总黄酮具有较强的清除·OH和DPPH自由基能力,IC50值分别为0.205、0.018 mg/m L,均低于相同质量浓度VC的IC50值(1.022、0.069 mg/m L)。采用超声波辅助提取技术,黄酮得率高,时间短,为香椿废弃组织中总黄酮的开发利用提供理论参考。 相似文献
4.
目的 优化超声波法提取淡豆豉总黄酮工艺,并评价淡豆豉总黄酮体外抗氧化活性。方法 以淡豆豉为研究对象,利用超声波法提取淡豆豉总黄酮,考察乙醇体积分数、料液比、提取时间对淡豆豉总黄酮含量的影响,通过响应面实验设计与分析方法 ,优化淡豆豉总黄酮提取工艺,并评价淡豆豉总黄酮体外抗氧化能力。结果 淡豆豉总黄酮最优提取工艺为:乙醇体积分数40%、料液比1:38 (g/m L)、提取时间60 min,此条件下总黄酮含量可达(7.967±0.031) mg/g;淡豆豉总黄酮具有一定抗氧化活性,其对1,1-二苯基-2-苦基肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)、2,2’-联氨-双(3-乙基苯并噻唑啉-6-磺酸)二胺盐[2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt,ABTS]、羟自由基(hydroxyl radical,OH·)清除率的半抑制浓度(half maximal inhibitory concentration,IC50)分别为34.88、38.71、452.20μ... 相似文献
5.
6.
以水为溶剂对龙竹竹叶多糖(Polysaccharide from Dendrocalamus giganteus leaves,简称PDL)进行提取,优化了提取PDL的最佳工艺参数,通过响应面分析得出PDL提取工艺的最佳参数组合为:提取温度76.5℃、提取时间2.7h、料液比1:89。在此提取条件下,PDL提取量为4.41mg/g,精制后PDL纯度为63.18%。体外抗氧化研究表明:PDL对羟自由基、超氧阴离子有较强的清除作用,对DPPH的清除作用较弱;TBA试验表明PMBL抗脂质过氧化效果不够理想。 相似文献
7.
目的优选沙棘果渣总黄酮提取的最佳工艺,并对其抗氧化活性进行评价。方法选取提取时间、温度、料液比、乙醇体积分数为影响因素,在单因素实验结果基础上确定各因素的分析水平,利用响应面中心组合法设计实验方案。并通过体外抗氧化能力指数(ORAC)法研究沙棘果渣总黄酮的抗氧化能力。结果建立了沙棘果渣总黄酮提取的数学模型,最佳提取工艺条件为乙醇体积分数70%、提取温度80℃、提取时间100 min、液料比25:1,沙棘果渣总黄酮具有较强抗氧化活性,与浓度成正相关。结论本研究结果可为沙棘果渣总黄酮工业化提取和应用提供理论指导。 相似文献
8.
目的 优选沙棘果渣总黄酮提取的最佳工艺,并对其抗氧化活性进行评价。方法 选取提取时间、温度、料液比、乙醇体积分数为影响因素,在单因素试验结果基础上确定各因素的分析水平,利用响应面中心组合法设计试验方案。并通过体外抗氧化能力指数(ORAC)法研究沙棘果渣总黄酮的抗氧化能力。结果建立了沙棘果渣总黄酮提取的数学模型,最佳提取工艺条件为乙醇体积分数70%、提取温度80℃、提取时间100min、液料比25∶1,沙棘果渣总黄酮具有较强抗氧化活性,与浓度成正相关。结论 本研究结果可为沙棘果渣总黄酮提取和应用提供理论指导。 相似文献
9.
采用响应面法优化菟丝子中总黄酮的提取工艺。在单因素实验的基础上,以乙醇浓度、提取温度、料液比、提取时间为自变量,总黄酮得率为因变量,运用Box-Behnken设计-响应面优化菟丝子中总黄酮回流提取工艺。并通过菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子自由基的清除作用来评价其抗氧化活性。结果表明:菟丝子总黄酮最佳提取工艺条件为乙醇浓度90.0%、提取温度70℃、料液比1:15 g/mL、提取时间100 min。在此条件下,菟丝子总黄酮得率为(34.65±0.02) mg/g,与模型预测值(34.37 mg/g)相对误差为0.81%,说明回流提取菟丝子总黄酮的工艺稳定可靠。菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.067、7.209、0.119 mg/mL,抗坏血酸对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.082、1.731、0.054 mg/mL,体外抗氧化试验结果表明,菟丝子总黄酮对DPPH自由基具有较强的清除能力,明显高于抗坏血酸;而对羟自由基、超氧阴离子具有一定的清除能力,但清除能力低于同浓度的抗坏血酸。 相似文献
10.
11.
12.
采用响应面法优化云南丽江产玛咖叶总黄酮的提取条件。在单因素试验基础上,选择乙醇体积分数、提取温度、料液比为影响因子,应用Box-Benhnken中心组合法进行3因素3水平试验设计,以玛咖叶总黄酮得率为响应值,进行响应面分析,并比较玛咖叶总黄酮的体外抗氧化活性。结果表明,玛咖叶总黄酮的最佳提取条件为乙醇体积分数65%、提取温度64℃、料液比29:1(mL/g),在此条件下,玛咖叶总黄酮的得率可达到(2.49±0.02)%。同时建立了乙醇溶液提取玛咖叶总黄酮的二次数学模型,对目标产物提取具有良好的预测作用。玛咖叶总黄酮体外清除羟自由基、1,1-二苯基苦基苯肼(DPPH·)自由基和超氧阴离子自由基的IC50值分别0.605、0.165、0.425 mg/mL,其清除3种自由基的能力均高于相同浓度的2,6-二叔丁基对甲酚(BHT),但低于L-抗坏血酸。 相似文献
13.
14.
采用响应面法优化板栗叶总黄酮的加压溶剂提取工艺,并考察其抗氧化活性。通过单因素试验考察循环次数、提取温度、提取时间、乙醇体积分数4个因素对板栗叶总黄酮提取率的影响,并采用Box-Behnken设计对提取工艺进行优化,通过DPPH自由基和ABTS+自由基清除以及总抗氧化能力研究其抗氧化活性。结果表明,循环次数为2次,提取温度为73℃,提取时间为7.3 min,乙醇体积分数为40%时总黄酮提取率达到最大值,为(5.18±0.06)%,与预测值(5.20±0.10)%稳合良好。在所设最大板栗叶黄酮提取液浓度下,DPPH自由基清除率为88.44%,ABTS+自由基清除率为82.76%,总抗氧化能力为980.3μmol/L,表明具有很好的抗氧化活性。 相似文献
15.
16.
17.
18.
超声波辅助提取花椒叶总黄酮及其体外抗氧化性研究 总被引:1,自引:0,他引:1
以3种溶剂提取花椒叶中总黄酮类化合物,比较其黄酮抗氧化性活性。试验结果表明:水提取花椒叶中总黄酮最佳温度80℃,料液比1:70,时间30 min,功率360 W,总黄酮得率3.51%。乙醇溶液提取花椒中总黄酮最佳温度70℃,乙醇体积分数24%,料液比1:40,时间25 min,功率360 W,总黄酮得率3.30%。丙酮-水(2:1)溶液提取花椒叶黄酮得率为3.53%。水溶液、乙醇溶液、丙酮溶液、VC提取总黄酮的清除DPPH自由基能力IC50分别为24、17.5、7.6、75μg/mL。花椒叶总黄酮具有较强的还原能力和清除DPPH自由基能力,其排序为:丙酮溶液提取总黄酮乙醇溶液提取总黄酮水溶液提取总黄酮VC;对.OH自由基的清除能力排序为:VC丙酮溶液提取总黄酮乙醇溶液提取总黄酮水溶液提取总黄酮。花椒叶总黄酮活性强,是一种值得开发的植物资源。 相似文献
19.
为优化竹叶香豆素的提取工艺。在单因素试验基础上,进行四因素三水平的中心组合试验,用软件Design-Expert 8.0.1拟合响应值与影响因素的关系得到模型方程,分析模型方程得出提取香豆素最佳工艺:乙醇体积分数43.75%、提取温度80℃、提取时间50 min、液料比20︰1(mL·g^-1)。经验证,竹叶香豆素得率的试验值1.785 mg/g和预测值1.870 mg/g的相对误差为4.54%,说明模型可靠性高,运用响应面法优化竹叶香豆素的提取工艺条件的方法具有可行性。 相似文献