共查询到17条相似文献,搜索用时 83 毫秒
1.
以NaCl为致孔剂,采用粒子沥滤-相转移法制备了纳米羟基磷灰石/聚酰胺6(n-HA/PA6)多孔支架材料,用扫描电子显微镜(SEM),X射线衍射(XRD),示差扫描量热仪(DSC)等对其进行表征.结果表明,用该方法制备的多孔支架孔径分布在50~300μm,孔隙率约为77%,孔与孔之间的贯通性良好.用粒子沥滤-相转移法制备的支架中PA6的晶胞体积较制备前有所增大,同时其结晶度也有增加.研究表明,NaCl粒子的存在促进了PA6聚合物晶体的生长.在制备成支架后,n-HA/PA6复合材料中PA6仍为混晶型高聚物,其晶型部分发生了转变,由制备前α晶型占多数变成了制备后γ晶型占多数.支架的制备过程使PA6更容易结晶,但结晶总速率在制备支架前后均没有太大改变. 相似文献
2.
载微球纳米羟基磷灰石/壳聚糖复合多孔支架的制备与表征 总被引:1,自引:0,他引:1
首先通过乳化法合成海藻酸钠/壳聚糖(ALG/CS)复合微球,然后将其与纳米羟基磷灰石/壳聚糖H(n-HA/CS)复合材料混合均匀,用气体发泡法制备了载微球复合组织工程支架.并用扫描电子显微镜(SEM)、傅立叶变换红外光谱仪(IR)以及转靶X射线仪(XRD)等方法对该载微球多孔支架进行分析和表征.结果表明:n-HA/CS复合材料中无机相均匀分散在连续有机基质中,复合前后两组分均未发生明显变化;制备的载微球多孔支架中孔隙分布均匀,孔间贯通性良好,孔隙率较高;而其中的微球均呈球状,直径分布在150~350μm之间;微球表面粗糙且有大量微孔,载药后将利于药物的释放;微球在整个支架中分布均匀,而且与n-HA/CS基体材料间亲和性较高.本研究将为骨或软骨缺损提供一种性能优良且具有药物缓释功能的组织工程支架. 相似文献
3.
利用相转移法制备了纳米羟基磷灰石/聚酰胺66(n-HA/PA66)复合多孔支架.用不同浓度(1%、3%、5%)的壳聚糖(CS)溶液对多孔支架进行了表面修饰.用扫描电镜(SEM)和材料力学试验机对多孔支架修饰前后的形貌和力学性能进行了表征.研究了经CS修饰的n-HA/PA66复合多孔支架在磷酸盐缓冲溶液(PBS)中的浸泡行为,并初步研究了其与MG63细胞的细胞相客性.结果显示,多孔支架具有较为理想的孔隙结构和贯通性,经CS修饰后,其力学强度有显著提高.体外浸泡结果显示,随着漫泡时间的增加,支架表面微结构变得粗糙和多孔化.细胞实验表明该支架有利于细胞在表面的粘附、铺展、生长和增殖. 相似文献
4.
纳米羟基磷灰石/聚己内酯-壳聚糖复合多孔支架材料的制备与表征 总被引:3,自引:0,他引:3
结合纳米羟基磷灰石(n-HA)和聚合物的优点,采用溶液共混相分离制备出聚己内酯(PCL)-壳聚糖(CS)多孔支架材料,并采用离心注浆填充新方法对支架材料进行增强,制备复合多孔支架材料。用扫描电子显微镜、红外光谱、元素分析、孔隙率和抗压强度对材料进行了表征。结果表明复合材料具有良好的界面结合;孔隙率分析表明材料具有60%~80%的孔隙率,符合骨组织工程对支架材料的要求;力学性能测试表明材料的压缩强度得到大幅度提高。 相似文献
5.
通过共滴定法合成工艺制备出羟基磷灰石/胶原蛋白粉体,以制备的羟基磷灰石/胶原蛋白粉体为原料,选用冷冻干燥成型技术,制备羟基磷灰石/胶原蛋白/壳聚糖复合多孔支架材料.研究结果表明:通过X射线衍射分析和透射电镜分析,羟基磷灰石/胶原蛋白纳米粉体中羟基磷灰石晶粒是针状的弱结晶的晶体,与天然骨中的纳米羟基磷灰石晶粒相近;羟基磷灰石/胶原蛋白/壳聚糖复合多孔支架的抗压强度、孔隙率、平均孔径可达到骨组织工程支架材料的要求,是由有机-无机三相复合、具有三维多孔结构、又有良好机械性能的具有发展潜力的骨支架材料. 相似文献
6.
7.
为提高骨组织工程支架材料的力学性能,改善其生物活性,综合天然与合成高分子的优点,采用溶液共混相分离法制备出聚己内酯(PCL)-壳聚糖(CS)多孔支架材料, 并进一步采用离心注浆法填充具有生物活性的纳米羟基磷灰石(HA)-聚乙烯醇(PVA)复合浆料, 制备了n-HA-PVA/PCL-CS复合多孔支架材料, 改善了PCL-CS支架材料力学性能。采用扫描电子显微镜、红外光谱、元素分析、孔隙率和抗压强度试验对材料进行了表征。结果表明, PCL-CS支架材料的内部具有蜂窝状的相互贯通的孔隙结构,孔隙率可以达到60%~80%。CS含量越大,孔隙率越大,而抗压强度越小。填充后的n-HA-PVA/PCL-CS复合多孔支架材料,孔隙率有所下降,但仍大于60%,而其弹性模量可提高至25.71 MPa。 相似文献
8.
纳米羟基磷灰石/丝素蛋白多孔支架材料的制备和表征 总被引:1,自引:0,他引:1
采用硝酸钙-丝素蛋白溶液与磷酸钠反应仿生合成纳米羟基磷灰石/丝素蛋白(n-HA/SF)复合材料,并以NaHCO3和NaCl为致孔剂制备了多孔复合支架材料,采用TEM、IR、SEM和EDX对其进行了表征.结果表明,复合材料中HA的粒径在20~50nm之间,是一种CO2-3部分替代型弱结晶类骨针晶,在形貌和尺寸等方面类似于人体骨磷灰石晶体;HA和SF两相间存在强烈的键合作用,复合支架材料呈高度多孔结构,孔壁上富含微孔,孔隙间贯通性高.EDX分析结果表明,HA在有机基体中分布均匀,钙磷元素比为1.66,当复合材料和致孔剂的比例为1:0.5时,其抗压强度可达20.23MPa. 相似文献
9.
纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征 总被引:26,自引:1,他引:26
通过共沉淀法制备了纳米羟基磷灰石/壳聚糖复合骨修复材料,并采用 TEM、IR、XRD、TGA 及万能材料试验机等手段对材料进行分析表征,还通过对材料的燃烧试验研究了复合材料中两相间的分散均匀性。结果表明:复合材料中的羟基磷灰石为类似于自然骨矿物相的弱结晶含碳酸纳米晶体,并均匀分散于有机相壳聚糖中;复合后壳聚糖在 1655cm-1的酰胺Ⅰ谱带和 1599cm-1 的—NH2 吸收峰均向低波数方向移动,暗示复合材料中两相间发生了相互作用。复合材料的力学性能较之两种单组分材料有明显的改善,当纳米羟基磷灰石/壳聚糖重量比为 70/30 时,复合材料的抗压强度最高,达120MPa左右,可满足骨组织修复与替代材料的要求。 相似文献
10.
原位水化法制备羟基磷灰石/壳聚糖复合支架材料 总被引:3,自引:0,他引:3
以含Ca2+和PO34-的溶液为无机相,壳聚糖(chitosan,CS)溶液为高分子相,采用原位水化法制备羟基磷灰石(hydroxyapatite,HAP)/CS复合多孔支架材料。XRD和IR的表征和分析表明水化24h后,复合支架中的钙磷盐从磷酸氢钙(dicalciumphos phate dehydrate,DCPD)转化为HAP。SEM和EDS显示15μm左右的棒状HAP颗粒均匀地分散在多孔支架的孔壁上,压缩强度的测试结果表明这种结构显著提高复合支架的力学性能。 相似文献
11.
采用溶剂自扩散原理从聚L-乳酸(PLLA)/β-磷酸三钙(β-TCP)氯仿液中沉积得到PLLA/β-TCP复合颗粒,研究了不同扩散介质对该过程的影响.研究表明制备复合颗粒以丙酮/无水乙醇混合液为扩散介质效果最佳,以其为扩散介质沉积速率快、沉积充分,且得到的复合颗粒可以经模压成型、粒子沥滤工艺制备PLLA/β-TCP多孔复合支架.对多孔支架进行了SEM、孔隙率、力学性能及有机溶剂残留量测试,结果表明制备的多孔支架孔结构三维贯通,孔隙率60.3%,抗压强度4.40MPa,氯仿、丙酮、无水乙醇残留量分别为3.630×10-5、2.07 × 10-6、2.517×10-5,满足组织工程支架材料要求. 相似文献
12.
采用溶液浇铸法,以二氯甲烷作为溶剂,制备了聚己内酯/羟基磷灰石晶须(PCL/HAw)复合多孔支架,并进行了正交试验,综合分析了不同配方量的PCL和HAw对材料机械性能的影响。结果表明,可通过控制PCL的量来控制支架的力学性能,通过加入HAw提高支架的亲水性能,支架的接触角实验显示其接触角为81°;PCL的结晶度会随着HAw含量的增加而增强,复合多孔支架的抗拉强度为1.43M~9.21MPa,并在PCL与HAw的质量比为100∶3时达到最大;细胞毒性实验显示,PCL/HAw复合多孔支架细胞毒性为0,满足生物材料使用要求。 相似文献
13.
聚乳酸-羟基乙酸(PLGA)/改性纳米羟基磷灰石(MHA)复合多孔组织工程支架材料的制备主要包含以下步骤:首先通过室温化学共沉淀法制备纳米羟基磷灰石,然后通过L-丙交酯在二甲苯溶液中聚合接枝纳米羟基磷灰石得到改性的纳米羟基磷灰石;最后通过改进的热致相分离两步初化法制备PLGA/MHA复合多孔支架.X射线衍射仪(XRD)显示纳米羟基磷灰石合成成功,透射电子显微镜(TEM)结果显示其为半径为30~50nm的球形,红外光谱显示聚乳酸成功的接枝到纳米羟基磷灰石表面;扫描电子显微镜(SEM)结果表明改进的热致相分离两步初化法制备的PLGA/MHA复合多孔支架的孔径在100~450μm. 相似文献
14.
纳米羟基磷灰石/壳聚糖/羧甲基纤维素三元复合骨修复材料的制备和性能研究 总被引:9,自引:0,他引:9
用溶液共混法在常温常压下制备了不同比例的纳米羟基磷灰石/壳聚糖/羧甲基纤维素三元复合骨修复材料.用燃烧实验、IR、XRD、SEM及TEM对复合材料的组成结构及形貌进行了分析和观察,并初步研究了其力学性能.结果表明该复合材料中纳米羟基磷灰石均匀分散在壳聚糖和羧甲基纤维素网络结构中,三组分间还产生了一定的相互作用,其形态、尺寸及结构与自然骨类似,且其抗压强度比纳米羟基磷灰石/壳聚糖二元复合材料更高;同时,通过调节各组分比例,可制得不同抗压强度的复合材料.因此,该三元复合材料可望作为一种新型可降解的非承重部位骨修复材料,在生物医学材料的研究中具有重要意义. 相似文献
15.
以磷灰石-硅灰石(AW)生物活性多孔玻璃陶瓷支架材料为基体,采用物理包被法制备了壳聚糖(CS)/AW复合多孔支架材料,通过红外图谱分析、扫描电镜、光学显微镜、强度检测等分析测试方法,研究了复合材料的组成、微观结构、力学和矿化性能。结果发现:复合材料与AW多孔支架材料基体相比,仍具有三维贯通且分布均匀的孔隙结构,孔径尺寸约 100~500μm,孔隙率为80%左右,且力学性能明显增强,平均抗压强度可达3.11 MPa,比多孔AW支架材料基体的平均抗压强度提高了8.3倍。体外模拟体液浸泡实验表明,复合材料具有较高的矿化功能,预示材料具有较好的生物活性。这种复合材料可望作为人体非承重部位的植入骨修复体和组织工程支架使用。 相似文献
16.