首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In medical ultrasound imaging, two-dimensional (2-D) array transducers are necessary to implement dynamic focusing in two dimensions, phase correction in two dimensions and high speed volumetric imaging. However, the small size of a 2-D array element results in a small clamped capacitance and a large electrical impedance, which decreases the transducer signal-to-noise ratio (SNR). We have previously shown that SNR is improved using transducers made from multi-layer PZT, due to their lower electrical impedance. In this work, we hypothesize that SNR is further increased using a hybrid array configuration: in the transmit mode, a 10 Omega electronic transmitter excites a 10 Omega multi-layer array element; in the receive mode, a single layer element drives a high impedance preamplifier located in the transducer handle. The preamplifier drives the coaxial cable connected to the ultrasound scanner. For comparison, the following control configuration was used: in the transmit mode, a 50 Omega source excites a single layer element, and in the receive mode, a single layer element drives a coaxial cable load. For a 5x102 hybrid array operating at 7.5 MHz, maximum transmit output power was obtained with 9 PZT layers according to the KLM transmission line model. In this case, the simulated pulse-echo SNR was improved by 23.7 dB for the hybrid configuration compared to the control. With such dramatic improvement in pulse-echo SNR, low voltage transmitters can be used. These can be fabricated on integrated circuits and incorporated into the transducer handle.  相似文献   

2.
This paper discusses the development of a 64-element 35-MHz composite ultrasonic array. This array was designed primarily for ocular imaging applications, and features 2-2 composite elements mechanically diced out of a fine-grain high-density Navy Type VI ceramic. Array elements were spaced at a 50-micron pitch, interconnected via a custom flexible circuit and matched to the 50-ohm system electronics via a 75-ohm transmission line coaxial cable. Elevation focusing was achieved using a cylindrically shaped epoxy lens. One functional 64-element array was fabricated and tested. Bandwidths averaging 55%, 23-dB insertion loss, and crosstalk less than -24 dB were measured. An image of a tungsten wire target phantom was acquired using a synthetic aperture reconstruction algorithm. The results from this imaging test demonstrate resolution exceeding 50 microm axially and 100 microm laterally.  相似文献   

3.
The signal-to-noise ratio (SNR) is a major obstacle to achieving increased resolution in magnetic resonance microscopy (MRM). The SNR considerations for MRM are presented, with particular attention to the role of judicious receiver coil design in maximizing sensitivity and limiting noise contributions both from the sample and the coil. We present a number of different coil configurations that have been optimized for particular applications of MRM in the biological sciences. An overview of the literature regarding derivations of the SNR for birdcage-configuration volume coils, inductively coupled surface coils, and surgically implanted coils is presented in a unified fashion. Microscopy coils designed to reduce the total volume of excitation, thus coupling more closely to a given region of interest, are discussed. The volume coil is presented in terms of its application to lung imaging in small animals at 2 T and imaging of stroke at 7 T. The performance of traditional surface coils is demonstrated by application to spinal cord imaging in the rat. Finally, implanted coils are examined, as used in studies of the carotid arteries. © 1997 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 8, 277–284, 1997  相似文献   

4.
Ultrasound imaging at frequencies above 20 MHz is capable of achieving improved resolution in clinical applications requiring limited penetration depth. High frequency arrays that allow real-time imaging are desired for these applications but are not yet currently available. In this work, a method for fabricating fine-scale 2-2 composites suitable for 30-MHz linear array transducers was successfully demonstrated. High thickness coupling, low mechanical loss, and moderate electrical loss were achieved. This piezo-composite was incorporated into a 30-MHz array that included acoustic matching, an elevation focusing lens, electrical matching, and an air-filled kerf between elements. Bandwidths near 60%, 15-dB insertion loss, and crosstalk less than -30 dB were measured. Images of both a phantom and an ex vivo human eye were acquired using a synthetic aperture reconstruction method, resulting in measured lateral and axial resolutions of approximately 100 μm  相似文献   

5.
Tsai FC  O'brien CJ  Petrovi NS  Raki AD 《Applied optics》2007,46(13):2434-2442
The effect of transmitter and receiver array configurations on the performance of free-space optical interconnects (FSOIs) was investigated. Experimentally measured, spectrally resolved, near-field images of vertical-cavity surface-emitting laser (VCSEL) transverse modes were used as extended sources in our simulation model and combined with laser relative intensity noise and the receiver noise to determine the optimal array geometry. Our results demonstrate the importance of stray-light cross talk in both square and hexagonal configurations. By changing the array lattice geometry from square to hexagonal, we obtained an overall optical signal-to-noise ratio improvement of 3 dB. We demonstrated that the optical signal-to-noise ratio is optimal for the hexagonal channel arrangement regardless of the transverse mode structure of the VCSEL beam. We also determined the VCSEL drive current required for the best performance of the FSOI system.  相似文献   

6.
Prospective imaging with electrocardiogram (ECG) and respiratory gating presents an imaging application that leverages the improved image quality of high-frequency (>20 MHz) annular arrays without the need for rapid mechanical motion. The limitation of prospective imaging is that the object being imaged must have a periodically stable motion. The present study investigated the implementation of prospective imaging with a 34 MHz annular-array scan system to image the mouse heart at high effective frame rates, >200 frames/s (fps). M-mode data for all transmit-to-receive pairs were acquired at a series of spatial locations using ECG and respiratory gating, and the data were then synthetically focused in postprocessing. The pulse-repetition frequency of the M-mode data determined the effective frame rate of the final B-mode image sequence. The hearts of adult mice were prospectively imaged and compared with retrospective data acquired with a commercial ultrasonic biomicroscope (UBM). The annulararray data were acquired at an effective frame rate of 500 fps spanning 0.5 s, and the UBM data were acquired at 1000 fps spanning 0.15 s. The resulting images showed that multiple heart cycles could be clearly resolved using prospective imaging and that synthetic focusing improved image resolution and SNR of the right ventricle, interventricular septum, posterior edge of the left ventricle (LV), and papillary muscles of the LV versus fixed-focused imaging and the retrospective imaging of the UBM machine.  相似文献   

7.
Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications.  相似文献   

8.
This paper describes a unique crossed electrode array for real-time volume ultrasound imaging. By placing orthogonal linear array electrode patterns on the opposite sides of a hemispherically shaped composite transducer substrate, a 2D array can be fabricated using a small fraction of the elements required for a traditional 2D array. The performance of the array is investigated using a computer simulation of the radiation pattern. We show that by using a 288-element crossed electrode pattern it is possible to collect large field of view volume images (60deg times 60degsector) at real-time frame rates (>20 volume images/s), with image contrast and resolution comparable to what can be obtained using a conventional 128-element linear phased array.  相似文献   

9.
A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.  相似文献   

10.
In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 μm and 150 μm diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.  相似文献   

11.
Ultrasonic imaging using a computed point spread function   总被引:1,自引:0,他引:1  
An explicit point spread function (PSF) evaluator in the frequency domain is described for an ultrasonic transducer operating in the pulse-echo mode. The PSF evaluator employs the patch element model for transducer field determination and scattered field assessment from a small but finite "point" reflector. The PSF for a planar transducer in a medium has been evaluated in the near and the far field. The computed PSFs were used to deconvolve and restore surface images, obtained experimentally, of a single hole and a five-hole cluster in an Al calibration block. A calibration plot is arrived at for estimating, without the need for deconvolution, the actual diameters of circular reflectors from apparent diameters obtained experimentally for a single-medium imaging configuration. The PSF, when the transducer and the point reflector are in two media separated by a planar interface, was evaluated in the near and far field. The computed PSFs were used to deconvolve and restore subsurface images, obtained experimentally, of flat bottom holes (FBHs) in an Al calibration block. We show that the PSF, in the presence of a planar interface, can be obtained from a single-medium PSF model using an effective single-medium path length concept. The PSFs and modulation transfer functions (MTFs) are evaluated for spherical focused and annular transducers and compared with those for the planar transducer. We identify imaging distances to get better-resolved images when using planar, spherical focused, and annular transducers.  相似文献   

12.
A commercially available fiber-optic Raman probe was modified for high-resolution spectral Raman imaging using a 350 microm diameter optical fiber image guide coupled to a dimension-reduction imaging array (DRIA). The DRIA comprised 672 optical fibers, arranged as a square array (21 x 32 fibers) on one end and a linear array (672 x 1 fibers) on the other. An imaging spectrograph was used with the DRIA to acquire multi-wavelength Raman images from -250 to 1800 cm(-1) at a spectral resolution of approximately 5 cm(-1). The utility of this technique for in situ and remote Raman imaging is demonstrated by monitoring the polymerization of a model polymer, dibromostyrene (DBS), while simultaneously measuring the Raman Stokes/ anti-Stokes ratio as a function of sample heating time, over a sample area of approximately 4 x 1.6 mm.  相似文献   

13.
A self-control method of vibrations is presented in this paper. This method combines the passive damping capabilities afforded by viscoelastic materials with the active control properties associated with piezoelectric materials. Active control is introduced, using the piezoelectric properties, in order to improve the reduction in vibration amplitudes that can be obtained by viscoelastic passive damping alone. To this end, a filter has been mounted between the sensors and the actuators. The resulting nonlinear problem is discretized using the recently developed solid-shell finite element SHB20E, due to the advantages it offers in terms of accuracy and efficiency as compared to standard finite elements with the same geometry and kinematics. In order to solve the discretized problem, a resolution method using DIAMANT approach is developed. A set of selective and representative numerical tests are performed on multilayer plates to demonstrate the interest of the proposed damping model.  相似文献   

14.
Array coils for magnetic resonance imaging have been used to improve field uniformity, improve signal-to-noise ratios, and increase imaging speed. Alternative radio frequency (RF) coils that use metamaterials, such as loop or microstrip coils, have recently been proposed and are expected to provide better performance than the traditional RF array coils. Transmission lines (TLs) based on metamaterials are known as composite right- and left-handed (CRLH) TLs, which are artificially created by adding inductances and capacitances to a common TL. CRLH TLs have a zero-order resonance mode, wherein wave propagation is independent of the TL's electrical length. Decoupling between array elements is important for obtaining the benefits of parallel imaging. In this study, we analyze the decoupling properties between two CRLH TLs. In addition, we design a linear array of four CRLH TLs to obtain a uniform magnetic (|B1|)-field in the axial- and longitudinal-direction at 7T for the corresponding frequency of 300 MHz.  相似文献   

15.
The attenuation coefficient distribution and sound velocity distribution in the breast can be used to complement B-mode ultrasound imaging in the detection of breast cancer. This study investigated an approach for reconstructing the attenuation coefficient distribution in the breast using a linear array. The imaging setup was identical to that for conventional B-mode breast imaging, and the same setup has been used for reconstruction of sound velocity distributions in previous studies. In this study, we further developed a reconstruction method for the attenuation coefficient distribution. In particular, the proposed method incorporates the segmentation information from B-mode images and uses the sound velocity distribution to compensate for refraction effects. Experiments were conducted with a setup consisting of a 5-MHz, 128-channel linear array, a programmable digital array system, a phantom, and a computer. The constructed phantom contained materials mimicking the following breast tissues: glandular tissue, fat, cysts, high-attenuation tumors, and irregular tumors. Application of the proposed technique resulted in all the cysts and tumors (including high-attenuation and irregular tumors) being distinguished by thresholding the reconstructed attenuation coefficients. We have demonstrated that it is possible to use the same imaging setup to acquire data for B-mode image, sound velocity distribution, and attenuation coefficient distribution simultaneously. Moreover, the experimental data indicate its potential in improving the detection of breast cancer.  相似文献   

16.
Increasing transducer bandwidth and signal-to-noise ratio (SNR) is fundamental to improving the quality of medical ultrasound images. In previous work, the authors have proposed the use of multi-layer 1-3 PZT/epoxy composites to increase both but have encountered significant fabrication challenges. These difficulties include making the bond thickness between the layers extremely small relative to the ultrasound wavelength and aligning the posts of the composite to increase the coupling coefficient. The authors have routinely achieved a bond thickness of less than 5 mum but aligning the posts is more complicated. Finite element (PZFlex; Weidlinger, Assoc., New York, NY and Los Altos, CA) simulations show that the pulse-echo SNR and bandwidth degrade significantly with misalignment of the posts. Alignment of greater than 90% of the post pitch (i.e., tolerance of 10 to 20 mum) is required to obtain significant increases in SNR and bandwidth relative to conventional transducer arrays. This will be a difficult tolerance for large-scale production. Thus, the authors have developed a multi-layer composite hybrid array that will not require post alignment. This structure consists of a layer of 5 MHz 1-3 composite material on top of conventional 5 MHz PZT, which will provide greater SNR relative to conventional composites and increased bandwidth over multi-layer PZT. PZFlex simulations show that for a 2 MHz linear array element, the 2 layer hybrid structure increases the pulse-echo SNR by 7.5 dB over that from a single layer PZT element. Even without a matching layer, an increase in the -6 dB pulse-echo fractional bandwidth from 22% for the PZT element to 35% for the hybrid element was also predicted. Experimentally, in a 32 element array, the authors achieved an increase of 5.2 dB in SNR and an increased -6 dB bandwidth from 23 to 30%. In vitro and in vivo images showed corresponding improvements.  相似文献   

17.
Ultrasonic imaging using full-matrix capture, e.g., via the total focusing method (TFM), has been shown to increase angular inspection coverage and improve sensitivity to small defects in nondestructive evaluation. In this paper, we develop a Fourier-domain approach to full-matrix imaging based on the wavenumber algorithm used in synthetic aperture radar and sonar. The extension to the wavenumber algorithm for full-matrix data is described and the performance of the new algorithm compared with the TFM, which we use as a representative benchmark for the time-domain algorithms. The wavenumber algorithm provides a mathematically rigorous solution to the inverse problem for the assumed forward wave propagation model, whereas the TFM employs heuristic delay-and-sum beamforming. Consequently, the wavenumber algorithm has an improved point-spread function and provides better imagery. However, the major advantage of the wavenumber algorithm is its superior computational performance. For large arrays and images, the wavenumber algorithm is several orders of magnitude faster than the TFM. On the other hand, the key advantage of the TFM is its flexibility. The wavenumber algorithm requires a regularly sampled linear array, while the TFM can handle arbitrary imaging geometries. The TFM and the wavenumber algorithm are compared using simulated and experimental data.  相似文献   

18.
低信噪比条件下引导源目标定位算法   总被引:1,自引:0,他引:1  
为了实现引导源目标定位算法在低信噪比声源信号条件下的准确定位,在推导了引导源目标定位算法原理基础上,根据算法仿真结果的特点,提出了利用领域平均法对算法进行降噪处理的方法。对几组不同信噪比的引导声源和目标声源,进行了算法仿真,比较分析了其降噪前后的引导源目标定位算法处理结果。计算机仿真结果表明领域平均法降噪处理能有效提高引导源目标定位算法在低信噪比条件下的定位效能。  相似文献   

19.
20.
CdSe and CdTe are composite semiconductor materials used in hybrid solar cell due to their high absorption coefficients. CdSe and CdTe have different band gaps, 1.74 eV and 1.45 eV respectively and then they can absorb solar energy in a wider range of wavelength compare to the silicon solar cell. In this research, CdSe and CdTe nanorods were fabricated using electrochemical deposition in an anodic aluminum oxide template. The electrodeposition behaviors of CdSe and CdTe were investigated using cyclic voltammetric technique. The deposition potentials of CdSe and CdTe were obtained through cyclic voltammetric technique. The effects of Te and Se ion concentration in the electrolyte on the composition of the deposits were investigated to obtain 1:1 atomic ratio. Structures of layered CdSe/CdTe nanorods were analyzed with FESEM and EDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号