首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical soils are often low in available P and therefore require inputs of P fertilizer for optimum plant growth and production of food and fiber. The cost of applying imported or locally produced, water-soluble, P fertilizers is often greater than utilizing indigenous phosphate rock. Therefore quantifying the P availability of soils amended with phosphate rock-based products in a variety of crop management and environmental conditions in developing countries is desirable for making recommendations on best type and rate of fertilizers to use to obtain maximum agronomic and economic benefits. One adequate approach for evaluating the agronomic effectiveness of rock phosphate materials is through the use of32P/33P isotopic tracers. The present paper describes the principles and assumptions of the32P isotopic techniques commonly used in the field and greenhouse for the agronomic evaluation of rock phosphate materials. An overview of the applications of these techniques is also given.  相似文献   

2.
The agronomic effectiveness of P fertilizers, as sources of phosphorus for crops, was evaluated using the quantities, Pf, of phosphorus taken up byLolium perenne grown on 14 soils during greenhouse experiments in pot cultures. The Pf quantities were determined using32P-labelled fertilizers. Data were analysed using a new concept: the Isotopic Relative Agronomic Effectiveness (IRAE). The IRAE value was defined as the ratio of the Pf quantity, taken up by a crop, of a tested fertilizer over the Pf quantity, taken up by a crop, of a fertilizer used as standard. In our experiments diammonium phosphate (DAP) was used as standard P fertilizer and two rock phosphates, the North Carolina rock phosphate (NCPR) and a calcium-iron-aluminium phosphate (Phospal), were tested. As a linear relationship between Pf(NCPR) quantities and Pf(DAP) quantities was obtained, with r2 = 0.95, when the application rates increased from 15 mgP (kg soil)–1 to 200 mgP (kg soil)–1, it is conciuded that IRAE values for a given fertilizer, other than the standard fertilizer, could be determined with a single rate of application. As regards soil pH in the range 4.7 to 8.2 the IRAENCPR is related to soil pH by a curvilinear relationship: log IRAENCPR = –(0.44) pH + 4.05 with r2 = 0.89. The average of IRAEphospal values was 0.15 with a standard error = 7% irrespective of soil pH. Then a logarithmic relationship was obtained between IRAE values of the two tested fertilizers and their water P-solubility determined at the soil pH where they were applied.  相似文献   

3.
Phosphorus (P) inputs are required for sustainable agricultural production in most acid soils of the tropics and subtropics. Phosphate rocks (PR) and organic materials have been suggested as alternative P sources in these soils. Quantitative information on the P availability from sewage sludge (SL) is scanty. Methods to improve the effectiveness of PR such as partial acidulation and compaction with water-soluble P sources have been recommended. The objective of this greenhouse study was to evaluate the relative agronomic effectiveness (RAE) of Florida PR and sewage sludges (irradiated and non-irradiated) applied alone and in mixture with a water-soluble source (triple superphosphate, TSP) at two rates (50 and 150 mg P kg–1 soil). The 32P isotope dilution technique was utilised to determine the proportion of P in the plant taken up from the P fertilizer treatments. Wheat was grown on an acid loamy sand Dystric Eutrocrepts and harvested 6 weeks after planting. Results on total P uptake and the RAE of the P fertilizer sources tested indicated that the addition of 50 mg P kg–1 soil as TSP was adequate in supplying P to the 6-week-old wheat plants as compared to PR and sewage sludge. Intermediate values were obtained for the mixtures. Similar responses were observed for the high P rate. For a given P rate, phosphorus uptake from PR and SL in presence of TSP was higher than P uptake from these sources alone, indicating an enhancement effect of TSP on the effectiveness of these non-readily available sources. With respect to P uptake from PR applied alone, the relative increases in P uptake from PR due to TSP influence were 52 and 67% for the low and high P rates, respectively. The relative increases in P uptake from SL due to TSP when compared to P uptake from SL alone were 102 and 59% for the low and high P rates of application. Application of a water-soluble P fertilizer together with a non-readily available P source shows an enhancement on the P uptake from the non-readily available P source by the wheat plants. In this experiment the estimated enhancement effects are very likely underestimated.  相似文献   

4.
Isotope dilution techniques were used in a glasshouse experiment to compare seven P sources for oil palm seedlings grown on Rengam series soil (Typic Paleudult). The P sources were triple superphosphate (TSP) and six phosphate rocks from North Carolina, USA (NCPR), Tunisia (Gafsa PR), Jordan (JPR), Morocco (MPR), Christmas Island (CIPR) and China (CPR). The percent P derived from fertilisers (%PdfF) in the 3, 6, 9 and 12 months of growth ranged from 81% to 99%, indicating the poor P supplying power of the soil used. TSP was far superior than PR in supplying the required P at all times of measurement. Total amount of P taken up during the 12 months growing period was equivalent to 15.0% of the added P as TSP, it was 5.2% from NCPR, 4.2% from JPR, 4.1% from MPR, 3.2% from GPR, 4% from CIPR and 2.2% from CPR. The PR effectiveness based on the amounts of fertilizer P taken up by the oil palm seedlings at 12 months of growth was in the sequence of triple superphosphate > North Carolina PR > Gafsa PR Jordan PR Morocco PR Christmas Island PR > China PR. This was due to the reactivity of these P sources when applied into the soil, triple superphosphate being water soluble is immediately available. PR sources reacted with the soil solution with time, making P slowly available. PR solubilised by neutral ammonium citrate (NAC) expressed as percentage of rock was shown to correlate better than 2% citric acid and 2% formic acid with plant P uptake. Thus this method of extracting P from PR can be used as a basis for comparing PR effectiveness to oil palm seedlings.  相似文献   

5.
A greenhouse study was conducted with two surface, acidic soils (a Hiwassee loam and a Marvyn loamy sand) to measure the effect of increasing P-fixation capacity, on the relative agronomic effectiveness (RAE) of phosphate fertilizers derived from Sukulu Hills phosphate rock (PR) from Uganda. Prior to fertilizer application, Fe-gel was added to increase P-fixation capacity from 4.4 to 14.3% for the Marvyn soil and from 37.0 to 61.5% for the Hiwassee soil. Phosphate materials included compacted Sukulu Hills concentrate PR + Triple superphosphate (CTSP) at a total P ratio of PR:TSP = 50:50; 50% partially acidulated PR (CPAPR) from Sukulu Hills concentrate PR made with H2SO4; and Sukulu Hills concentrate PR (PRC) made by magnetically removing iron oxide from raw PR ore. Triple superphosphate (TSP) was used as a reference fertilizer. After adjusting soil pH to approximately 6, P sources were applied at rates of 0, 50, 150, and 300 mg total P kg–1 soil. Two successive crops of 5 week old corn seedlings (Zea mays L.) were grown. The results show that the RAE of the phosphate materials measured using dry-matter yield or P uptake generally decreased as P-fixation capacity was increased for both soils. CTSP was more effective in increasing dry-matter yield and P uptake than CPAPR. PRC alone was an ineffective P source. Soil chemical analysis showed that Bray 1 and Mehlich 1 extractants were ineffective on the high P-fixation capacity Fe-gel amended Hiwassee soil. Mehlich 1 was unsuitable for soils treated with PRC since it apparently solubilizes unreactive PR. When all of the soils and P sources were considered together, Pi paper was the most reliable test for estimating plant available P.  相似文献   

6.
A main constraint to agricultural productivity in the southern regionsof Chile is the low available soil P exacerbated by the high P sorptioncapacityof the predominant Andisols. Therefore, substantial amounts of P fertilizersmust be applied to obtain optimum growth and crop yields. One cost-effectivestrategy followed to supply P to crops grown in these soils is the directapplication of the local Bahia Inglesa PR source. However, a more sustainablestrategy would be to combine the use of the local PR with the crop species andcultivars that are able to grow in these acid soils and can utilize efficientlyPR. Rape is reported to be very efficient in utilising P from PR sources due toits capacity to exude organic acids to the rhizosphere. Therefore, the presentstudy was conducted to evaluate the ability of five rape cultivars grown in anAndisol of southern Chile in utilising P from two PR sources (Bahia Inglesa andBayovar) and triple superphosphate, a water-soluble P fertilizer. It was foundthat rape was able to absorb significant amounts of P from the PR sources andmuch less from the TSP and soil P. Both Bahia Inglesa and Bayovar PRs werefoundto be as effective as TSP for the rape genotypes in the Andisol Pemehue. Theuseof the 32P isotope technique enabled to assess the ability of thegenotypes tested to utilize P from the different P fertilizers applied. Thegenotypes G2 and G3 showed increased P acquisition from the PR than thegenotypeG5. Combined utilization of P efficient genotypes and direct application of theBahia Inglesa PR seems to be a promising technology for attaining sustainableagricultural productivity in the Andisols of Chile. Further field trials forvalidating these findings at the level of cropping systems are needed. Thisagronomic testing should be accompanied by in-depth studies to assess therelative importance of the morphological and physiological traits determining ahigher P efficiency.  相似文献   

7.
分析了目前红磷国内外生产研究方法中存在的问题,借鉴真空冶金技术的优势,结合国内磷矿资源特点,提出了用真空冶金方法直接从磷矿石制备红磷的新思路.  相似文献   

8.
The agronomic effectiveness of two natural phosphate rocks (PRs) from North Carolina (USA) and Togo and their 50% partially acidulated products (PAPRs) was evaluated in two greenhouse experiments using32P isotopic dilution techniques, namely L and AL values.In the first experiment rye grass was grown in a soil from Ghana. While the proportion of P in the plant derived from the P fertilizer (Pdff) ranged on. the average from about 10% for the PRs up to 80% for the PAPRs, the P fertilizer recovery was less than 1% for a 60-day growth period. In the second experiment, average values of P in the maize plants derived from the PAPRs ranged from 35% to 75% in 3 different soils. Both PRs were ineffective with the exception of North Carolina PR in the Seibersdorf soil. The P fertilizer recovery was 0.25% for the North Carolina PR in this soil whereas the recovery values ranged from 1.2% to 1.6% for the PAPRs.Mean values of the relative fertilizer efficiency estimated from the L values of each soil were less than 1% for the PRs whereas the values for the PAPRs which were dependent on soil type ranged from 20% up to 45%. The coefficient of relative effect of partial acidulation, that was calculated from the ratio of AL values for PR and PAPR in each soil indicated that partial acidulation increased the effectiveness of the natural PRs in all soils under study.This study showed that the use of32P isotope dilution techniques allows an accurate measurement of the P availability from natural and modified PR products to crops. Another advantage is that quantitative comparison of the P sources under study, PRs and PAPRs in this case, can be made even in soils where there is no response to the applied P sources.  相似文献   

9.
Low grade phosphate rock (PR), containing high amounts of oxides of iron and aluminium is neither suitable for fertiliser production nor useful for direct application to annual crops. The fertiliser effectiveness of P extracted by H2SO4 from a low-grade phosphate rock, PR (Christmas Island C-grade PR) was evaluated for wheat (Triticum aestivum L.) on a calcareous loam (pH 8.4) and a non-calcareous loam (pH 6.9) in field and glasshouse experiments. Superphosphate was used to compare the performance of the acid extracts of PR. In the non-calcareous loam soil, crop establishment and yield were significantly reduced by the acid extracts of PR due to increased acidity. In the calcareous soil, however, the acid extracts of PR performed as well as superphosphate; similar or even higher crop yields were obtained with the former, especially when applied near the seed. The acid extracts of low-grade PR may, therefore, have a role in calcareous soils, where the extract can be applied directly or added in the irrigation waters to supply P to crops.  相似文献   

10.
黄磷生产对磷矿质量的要求   总被引:1,自引:1,他引:0  
介绍黄磷产品电炉电耗的计算方法 ,分析配合料中 P2 O5、Fe2 O3、CO2 对电耗的影响 ,阐述黄磷生产对磷矿化学组成和物理性能的技术要求  相似文献   

11.
The agronomic effectiveness of three P fertilizers (diamonium phosphate, rock phosphate and compost) was studied in a greenhouse experiment using wheat. A radioisotopic method, using triple superphosphate labelled with32P, was used to evaluate the P in dried tops that was derived from i) the soil, ii) labelled superphosphate and iii) the fertilizer being studied.The ratio between P uptake from each fertilizer and P uptake from the soil was used to compare the effectiveness of the different fertilizers. P derived from diammonium phosphate was greater than P derived from the soil, except in one soil. P derived from rock phosphate was always lower than P derived from the soil. The effectiveness of compost depended on soil type. Compost can produce two kind of effects: i) a direct P contribution and ii) an indirect effect improving P uptake from the soil. The radioisotopic method can be used to study the effectiveness of fertilizers even when there are no differences in yield.  相似文献   

12.
Soil phosphorus (P) deficiency is a major factor limiting crop productivity in many tropical and subtropical soils. Due to the acidic nature of these soils, rock phosphate (RP)-based P fertilizers that are cheaper than manufactured water-soluble P fertilizers can be an attractive alternative under certain conditions. Assessment of the efficacy of these alternative P fertilizers and a rational management of local P resources for sustainable agricultural production require an understanding of the dynamics of P in the soil–plant system and the interactions of various P sources in soils and monitoring of soil available P levels. The present work was conducted to test the applicability of the 32P isotopic kinetic method to assess the soil P fertility status and evaluate the agronomic effectiveness of local rock phosphates in subtropical China. A series of experiments was carried out in the laboratory, greenhouse and field conditions with the following specific objectives: (a) to evaluate the suitability of this isotopic kinetic method in evaluating soil P fertility in 32 soil samples collected across southern China, (b) to test and further develop chemical extraction methods for routine soil P testing, (c) to monitor the dissolution kinetics of local low to medium grade rock phosphate sources and their effect on soil properties and (d) to evaluate their agronomic effectiveness in greenhouse and field experiments. Since most of the studied soils had very low concentrations of soluble P and high P-fixing capacities, the isotopic kinetic method was found unsuitable for evaluating soil P fertility and to predict plant P uptake. In contrast, the proposed chemical extraction method (NaHCO3-NH4F) predicted very well plant P uptake, suggesting that this extraction method can be routinely used to evaluate soil bioavailable P in similar soils in subtropical China. From the incubation study, it was found that although the local low to medium grade RPs were inferior to the reactive NCPR in increasing soil available P levels, they have the potential to improve soil chemical properties. Field experiments indeed demonstrated that the medium grade Jinxiang RP significantly increased crop yield, suggesting that local low to medium grade RPs could be used as P sources to provide P to plants and also to improve soil chemical properties. Overall, these results provide important information for a rational management of P resources for sustainable agriculture in subtropical China.  相似文献   

13.
Phosphorus (P) is needed in large areas of developing countries toimprove soil fertility for crop production. The use of phosphate rock (PR) isan alternative to costly soluble P fertilizers, but it is ineffective usuallyin non-acid soils unless it is modified i.e. partially acidulated (PAPR). Alaboratory incubation study using the isotopic exchange kinetic method of32P and field experiments were undertaken on a neutral Ferralsol ofCuba to evaluate the effectiveness of PAPRs as fertilizers for common bean(Phaseolus vulgaris, L.). Sulfuric-acid based PAPR using40%, 50% and 60% of the acid required to produce singlesuperphosphate were studied. In the laboratory experiment Trinidad de GuedesPAPR was effective in providing P to the soil, through increases inisotopicallyexchangeable P and the percentage of P derived from fertilizer (%Pdff). In the three field experiments carried out to compare the P sources,yields of common bean were increased by PAPR, though the response was less thanwith triple superphosphate (TSP). The relative agronomic effectiveness (RAE) ofPAPR was greater than that of unacidulated PR. Taking into account the RAEvalues and the current cost of the P sources, the choice of Trinidad de GuedesPAPR instead of TSP could be economic, although the RAE value for PAPR waslowerthan that of TSP. This result indicates that PAPR could be used in thesoil understudy to obtain the best economic return. DM yield, P uptake and grain yield ofcommon bean were significantly increased by applying P as 50% PAPR. Lowcost improvement of the agronomic value of PR can be achieved by partialacidulation, so this modification of the phosphate rock show promise forutilization of PR reserves indigenous to developing countries.  相似文献   

14.
Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg–1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 °C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha–1, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (CP<0.02 mg P l–1) and low exchangeable P (E1min < 5 mg P kg–1). The capacity factor and the fixation index of the soils were variable. Application of water-soluble P as TSP increased both the CP and E1 values of all the soils above the critical levels. Togo PR was least effective among the fertilizers tested for all soil soils, except in Boi soil. Acidulation of Togo PR (Togo PAPR-50%) was an effective means to increase its agronomic effectiveness. Direct application of natural Togo PR would be only feasible in the Boi soil series as reflected by its high Pdff% value in soil solution. Incubation with the P fertilizers caused an increase in the soil pH and a decline in the effectiveness of the applied P fertilizers, irrespective of the soil and the fertilizer utilized. Based upon the results of the greenhouse pot experiment, the relative crop response index (RCRI) in terms of increasing dry matter yield and P uptake followed the order of TSP > PAPR = Mali PR >Togo PR = Control. Both the laboratory index, Pdff% in soil solution derived from the isotopic method and the RCRI values obtained from the pot experiment produced similar results in ranking the P fertilizers tested according to their agronomic effectiveness. The isotopic kinetic method may be considered as an alternative to both greenhouse and field methods in the evaluation of agronomic effectiveness of P fertilizers in tropical acid soils when it offers comparative advantages in assessing the soil P status and its changes. But trained staff and adequate laboratory facilities are needed to perform this technique. Also the method can be used as a reference for comparison purposes as in this case. Further research is needed to assess the overall agronomic effectiveness (immediate and residual effects) of PR sources in predominant cropping systems of this region of Ghana.  相似文献   

15.
A soil P fertility recapitalization initiative utilizinglarge rates of phosphate rocks (PRs) was proposed to improve the soil P statusand increase the sustainable food production in acid and P-deficient tropicalsoils. Two series of experiments were carried out using five tropical acidsoilstreated with heavy applications of Gafsa phosphate rock (GPR). In the firstseries, the soils were mixed with GPR at the following application rates: 0,500, 1000 and 2000 mg P·kg–1, andincubatedfor one month in moist conditions. In another series, 1000 mg Pkg–1 applied as GPR was added to three soils andincubated for 1.5 month; thereafter 50 mg P kg–1as triple superphosphate (TSP) were added. The 32P isotopic exchangemethod was utilized to assess the contribution of GPR to the available soil P.Changes in amounts, E, of P transferred with time as phosphate ions from thesoil particles to the soil solution as well as changes in pH, calcium andphosphate concentrations in soil suspensions were determined. It was foundthat:(i) the contribution of P from GPR to recapitalization of soil P fertility wasmainly assessed by E pool size, pH, calcium and phosphate concentrations; othervariables were not significant at the 0.1 level; (ii) heavy applications of GPRdid not saturate all the P sorption sites, P freshly applied as water-soluble Pwas still sorbed; (iii) recapitalization of soil P fertility using GPR waspartly obtained in some acid tropical soils; (iv) Upon dissolution, GPRprovidedcalcium ions to crops and to soils, thus reducing Al toxicity, but its limingeffect was limited. To explain these effects with heavy application rates ofGPR, it was postulated that a coating of Al and Fe compounds is formed aroundPRparticles with time, thus reducing further dissolution.  相似文献   

16.
Dissolution of phosphate rocks (PRs) during composting with poultry manure was examined using a radioactive32P labelled synthetic francolite and North Carolina phosphate rock (NCPR) through laboratory incubation experiments. Francolite or NCPR was mixed with different poultry manure composts at a rate equivalent to 5 mg P g–1 and the dissolution was measured after 60 and 120 days incubation by a sequential phosphorus (P) fractionation procedure.The use of32P labelled francolite showed that in manure systems, PR dissolution can be measured more accurately from the increases in NaOH extractable P (NaOH-P) than from the decreases in HCl extractable P (HCl-P) in the PR treated manure over the control. The dissolution measurements showed that approximately 8 to 20% of francolite and 27% of NCPR dissolved during incubation with poultry manure composts in the presence of various amendments. Addition of elemental sulphur (S°) to the compost enhanced the dissolution of PRs. The results provide no evidence for the beneficial effect of protons (H+), produced during the nitrification of NH 4 + in manure composts, on PR dissolution. The low level of dissolution of PR in poultry manure composts was attributed mainly to the high concentration (4.8 × 10–2 mol L–1) of calcium (Ca2+) in manure solution.  相似文献   

17.
Khouribga phosphate rock was partially acidulated with 50 and 70% of the required H2SO4 for complete acidulation. The unreacted rock residue was isolated by subsequent extractions with water and alkaline ammonium citrate solution. P solubility in 2% formic acid of this residues was reduced as compared to the original Khouribga phosphate rock. This loss in reactivity consistently increased with the degree of acidulation. Plant response to fertilizer application emphasized the negative effect of partial acidulation in an acid soil. Mixtures of superphosphate and phosphate rock were more effective than partially acidulated phosphate rock.Applications of apatitic P did not affect P efficiency on a neutral soil. Differences between mixed and partially acidulated phosphate rock could therefore not be observed. The effectiveness of the products was due to their content of acidulated P.Hydrolysis of monocalciumphosphate caused a further acidulation of the residual apatite in moist incubated granules. The extent of these reactions, however, was too low to improve P efficiency significantly.  相似文献   

18.
A pot experiment was designed to evaluate the interactive effects of multifunctional microbial inoculation treatments and rock phosphate (RP) application on N and P uptake by alfalfa through the use of 15N and 32P isotopic dilution approaches. The microbial inocula consisted of a wild type (WT) Rhizobium meliloti strain, the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe, and a phosphate solubilizing rhizobacterium (Enterobacter sp.). Inoculated microorganisms were established in the root tissues and/or in the rhizosphere soil of alfalfa plants (Medicago sativa L.). Improvements in N and P accumulation in alfalfa corroborate beneficial effects of Rhizobium and AM interactions. Inoculation with selected rhizobacteria improved the AM effect on N or P accumulation in both the RP-added soil and in the non RP-amended controls. Measurements of the 15N/14N ratio in plant shoots indicate an enhancement of the N2 fixation rates in Rhizobium-inoculated AM-plants, over that achieved by Rhizobium in non-mycorrhizal plants. Whether or not RP was added, AM-inoculated plants showed a lower specific activity (32P/31P) than did their comparable non-mycorrhizal controls, suggesting that the plant was using otherwise unavailable P sources. The phosphate-solubilizing, AM-associated, microbiota could in fact release phosphate ions, either from the added RP or from the indigenous ``less-available' soil phosphate. A low Ca concentrations in the test soil may have benefited P solubilization. Under field conditions, the inoculation with AM fungi significantly increased plant biomass and N and P accumulation in plant tissues. Phosphate-solubilizing rhizobacteria improved mycorrhizal responses in soil dually receiving RP and organic matter amendments. Organic matter addition favoured RP solubilization. This, together with a tailored microbial inoculation, increased the agronomic efficiency of RP in the test soil that was Ca deficient at neutral pH.  相似文献   

19.
Organic farming practice prohibits the use of triple superphosphate (TSP) as a source of phosphorus. As basic slag is not now generally available, interest is focused on the relative value of ground rock phosphate (GRP). A comparison of TSP and Gafsa GRP was made during 1988–92 as to their ability to increase DM production under cutting from newly sown grass/white clover swards established in 1987 on an acid clay soil in SW England. Averaged over the different P fertiliser inputs and years, the DM yield was 8.0 t ha-1 y-1 (range 6.93–9.81) compared to 6.3t ha-1y-1 (range 6.00–7.71) without added P. Lime was added at either 3 or 6t ha-1 in 1987, and at half these rates in 1990. Whereas the yield improved by 45% with P at the lower rate of lime, it improved only by 12% at the higher rate. When P fertiliser was applied annually at 30 kg ha-1, TSP was superior to GRP, but when applied in one initial dose of 120 kg ha-1, GRP was superior over the subsequent 4 year period. There was no consistent effect of the addition of either P or lime on the clover content of the sward. The alkaline bicarbonate soil test (Olsen P) was a good predictor of available P within a given year; there was a general reduction of P availability over the course of the experiment. Mechanisms to explain the longer term effectiveness of GRP are postulated and discussed. It is concluded that farmers who are limited to using GRP rather than TSP would suffer a yield penalty over the longer term of 11.5%, and that P fertilizer for the ley phase in a rotation should be incorporated in one dose at the outset.  相似文献   

20.
由于磷矿石在黄磷生产成本中所占的比重逐渐加大,通过磷矿化学组成对黄磷生产影响的分析,指出黄磷生产用矿不是品位越高越经济。提出对入炉磷矿科学合理兑配,改变其内在质量,既是对磷矿资源的优化配置,又可以降低磷矿消耗,改善炉况和产生好的经济技术效益  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号