首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
气候变化对长江、黄河源区水资源的影响   总被引:3,自引:0,他引:3  
白路遥  荣艳淑 《水资源保护》2012,28(1):46-50,70
利用1961—2010年长江、黄河源区22个气象站的月降水量和月平均气温资料,分析长江、黄河源区的气候特征,用降水与蒸发的差值作为水资源量的代表,分析了气候变化对水资源的影响。结果表明,长江源区和黄河源区降水、气温和蒸发都有明显变化,尤其是近20年有明显增加趋势,但是两个源区的变化并不一致,黄河源区水资源量一直呈波动变化,而长江源区在最近10多年水资源量有明显增多现象。降水增多可直接增加水资源量,但是气温升高会促进蒸发,导致更多的水资源消耗,因此降水和气温的变化可相互抵消对水资源的影响,这是黄河源区水资源量变化不大的原因。但是近10多年长江源区气温显著增加,导致更多冰川融化,这可能是近年来长江源水资源量增多的原因。  相似文献   

2.
《人民黄河》2015,(5):20-23
基于黄河源区及周边15个气象站1961—2012年的气象数据,运用极端气候指数法、距平分析法和Mann-Kendall趋势检验法分析了黄河源区52 a来降水和气温的时空变化趋势,剖析了极端气候指数的变化特点。结果表明:黄河源区各气象站年平均气温、极端高温和极端低温均呈一致性显著上升趋势;年降水量呈西部增大、东部减小的趋势;年最大5 d连续降水量和年无降水日数主要表现为西部减小、东部增大,且最大前十位的无降水日数在1990—2012年频繁出现,这说明近23 a来黄河源区西部湿润化趋势明显,而东部极端暴雨事件日趋严重,干旱化呈加剧趋势。  相似文献   

3.
近50a来黄河源区降水、气温及径流变化分析   总被引:2,自引:0,他引:2  
《人民黄河》2015,(7):9-12
基于1961—2010年气象、径流资料,采用M-K趋势检验法分析了黄河源区近50 a来降水量、气温和径流量的变化规律及三者间的内在关系,探讨了气温、降水量对黄河源区径流量季节性变化的影响。结果显示,近50 a来黄河源区降水量、气温变化具有明显的时空差异;黄河源区春季降水量显著增加,年降水量呈微弱减小趋势但不显著,东南部高值区降水量呈下降趋势而西北部低值区的降水量呈增加趋势;各季节均显著升温,东南部气温高值区的升温幅度要低于西北部气温低值区的;近50 a来黄河源区径流量呈显著下降趋势,其夏季径流量主要受夏季季风降水量的影响,而春季径流主要受春季降雨/降雪和上一年冬季降雪的影响。  相似文献   

4.
黄河源区气候变化特性分析   总被引:3,自引:2,他引:1       下载免费PDF全文
全球气候变化改变了水资源现状,黄河源区因其径流量偏枯的状态使得气候变化因素研究尤为重要。为研究黄河源区气候变化特性,选取12个国家气象站点1960-2016年近60年气温与降水量资料,综合分析黄河源区年内与年际气候变化特性。运用有序聚类分析法、Mann-Kendall检验法、滑动t检验法、线性趋势法、Spearman秩次相关检验法和Morlet小波分析法,得到最终结论:黄河源区四季均温增长态势均显著,冬季增长幅度最大;降水量在春、冬季呈显著增长态势,而夏秋季无明显下降趋势。年均气温序列突变点为1997年;降水量无明显的突变点。年均气温呈显著的递增趋势;而降水量序列无明显的递增趋势。年均气温存在着10、5与23a的年际变化周期情况;降水量存在着28、11与8a的年际变化周期情况。  相似文献   

5.
近年来,黄河源区由于受到气候变化和人类活动的影响,生态系统和水文情势均发生显著变化。本文就气候变化对黄河源区的影响展开调查,分析了源区的气温的变化趋势及突变年代,降水的季节分配和变化趋势,以及径流的年内变化和年际变化。本文通过计算径流年内分配不均匀系数判断径流分配均匀性,通过分析滑动平均序列的曲线判断整个时间序列的趋势,通过累积距平曲线的变化判断序列大致突变的时间以及长期持续变化情况和演变趋势。结果表明:在气候因子变化分析中,在1960~2014年长时间序列中,黄河源区年平均气温呈现显著增加趋势。根据降水变化分析结果,黄河源区降水年内分配差异较大,在年际变化上,降水量整体呈现不显著的增加趋势。黄河源区径流量不均匀系数较大,集中度较高,说明径流分配有明显的丰枯季节变化。径流量整体呈现减少的趋势,这种趋势在90年代至21世纪中期尤为明显。  相似文献   

6.
基于长江源区1956—2016年8个测站的逐日降水数据,采用集中度、集中期、Mann-Kendall趋势检验和滑动T检验法等统计方法,分析了长江源区近60 a来降水量序列的空间分布特征、年际和年内变化趋势、突变和周期变化特征等。结果表明:① 长江源区降水量呈现明显的增加趋势并通过显著性检验,增加速率10.2 mm/(10 a),多年平均降水量为344.8 mm;②长江源区的降水量在时间维度上存在显著的不均匀现象,多数聚集于为6—9月份,约占全年降水量的81.1%;③长江源区的降水量序列在1997年发生显著性突变,降水量变化存在25 a左右的第一主周期,第二、第三周期分别为3 a和10 a;④长江源区内各站点年降水量增加趋势空间变异性较大,总体呈现通天河上游降水量增加速率大于下游。研究结果可为长江流域水资源可持续利用和生态安全提供重要的科学依据。  相似文献   

7.
近52a黄河源区降水量和气温时空变化特征   总被引:1,自引:0,他引:1  
《人民黄河》2015,(7):16-21
利用黄河源区8个气象台站的降水量和气温资料,采用线性趋势法、滑动平均值法、累计距平法和回归分析法,系统研究了黄河源区1960—2012年降水和气温的时空变化规律,揭示了黄河源区不同区域降水量和气温变化的差异性。结果表明:1黄河源区降水量和气温呈增加趋势,增长率分别为1.92 mm/10 a和0.29℃/10 a,黄河源区降水量变化趋势与青藏高原一致,降水增加速率低于青藏高原的,升温幅度高于青藏高原的,为全国异常变暖区之一;2从5 a滑动平均曲线可以看出,黄河源区降水和气温变化趋势不同,降水量在20世纪70年代末至80年代中期显著偏高,1986年之后迅速减少,直到2004年又开始增加,气温在70年代末至80年代中期显著偏低,1986年之后迅速回升,进入显著高温期;3黄河源区降水量在春、夏季和冬季呈升高趋势,秋季呈减小趋势,气温在全年都呈升高趋势,降水量的增加主要发生在春季,而气温的升高主要发生在冬季;4黄河源区降水量空间变化差异显著,呈现出由东南向西北逐渐减小的变化规律,气温从西部向东部、北部和东南部地区升高,表现出以西部地区为中心,呈同心圆向四周升高的空间变化规律。  相似文献   

8.
根据南水北调东线源区1961-2017年降水和径流资料,运用累积距平法、Mann-Kendall检验法和Morlet小波分析等方法对源区降水变化特性和径流演变规律进行分析。结果表明:源区径流量变化规律与降水量一致,但丰枯变化程度要剧烈得多;年降水量主要集中在夏季,呈不显著增大趋势,年径流量主要集中在7-9月份,呈不显著减小趋势;自20世纪80年代以来,源区年际径流量的不均匀系数增大,多是降水量的4倍以上。未来即将进入9 a左右的丰水期,降水量、径流量均处于偏多态势,尤其是7月,源区将面临较严峻的防汛形势。  相似文献   

9.
黄河源区径流变化及原因分析   总被引:2,自引:0,他引:2  
采用斯波曼秩次相关法分析了黄河源区20世纪60年代以来径流变化情况,并从降水、气温、下垫面等影响因素探讨了黄河源区径流变化原因。结果表明:①黄河源区的径流年际变化从60年代以来有明显的阶段性变化,从年内变化来看,唐乃亥站的汛期和非汛期径流量占年径流量的比例也具有阶段性变化,从80年代中期到90年代末,汛期径流量占年径流量的比例一直减少,非汛期径流量所占比例一直增大。②过去40多a来,玛多站年降水量呈现出缓慢上升的趋势,玛曲站则呈现出下降的趋势;从降水年内变化来看,雨季降水量占年降水量的比例呈减少趋势,旱季降水量占年降水量的比例呈增加趋势。因此,黄河源区降水量的变化是影响径流变化的主要原因,90年代小雨多、降雨历时长是导致径流减少的另一个原因。③黄河源区径流的变化,特别是90年代径流量的偏小和气温的直接关系不大。④植被覆盖面积的变化并不是引起径流减少的原因。  相似文献   

10.
近年来,黄河源区水资源状况发生了较大变化,为探究黄河源区径流变化特征及影响因素,基于1961-2018年共58 a的径流和气象资料,采用Mann-Kendall检验和小波分析等方法对其进行了分析。结果表明:黄河源区径流量整体上呈现出不显著减少趋势,递减速率为-0.63×108 m3/a,夏、秋季减少幅度大,冬、春季减少幅度较小;1990年前后径流量均呈现不显著增加趋势,且1990年后增加趋势明显加速,后者增幅是前者的3.09倍;1990年后,降水量和气温递增高值区高度重合,且降水量是影响径流量变化的最重要因素。说明暖湿化加速和空间迁移过程导致了黄河源区冰川的加速消融,这也是1990年后径流快速增加的主要原因。  相似文献   

11.
采用青海省1965—2018年50个气象站月降水资料和同时段太阳黑子相对数资料,将青海省划分为长江和澜沧江源区、黄河源区、东部低海拔区和柴达木盆地区,运用集中度和集中期、线性倾向估计、M-K检验法和Morlet小波分析法对青海省时空降水变化特征进行分析.结果表明:青海省降水量在空间分布上呈现由西北向东南增加的特征,在年...  相似文献   

12.
黄河三角洲地区降水时序变化特征研究   总被引:2,自引:0,他引:2  
基于黄河三角洲内5个气象站1961—2007年逐日降水资料,采用Mann Kendal非参数检验、小波分析等方法,对近50年来黄河三角洲地区降水量时序变化特征进行研究。结果表明,黄河三角洲地区近50年来,年际和年内不同季节降水量均呈逐步下降趋势,并在1976年左右发生突变,之后降水量下降显著。年际降水存在约8~9年的主变化周期,而春夏秋冬四季降水存在约16~17年的主变化周期。根据周期变化特征,预测2012—2014年黄河三角洲地区将处于多水期,其中秋季和冬季降水较多,而春季和夏季降水较少。  相似文献   

13.
黄河流域极端降水特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用黄河流域1965-2012年252个观测站日降水资料,分析了黄河流域年极端降水、汛期日极端降水的时空分布特征。研究结果表明:黄河流域年极端降水在空间分布上呈现出从东南向西北递减的特点,不同区域的年极端降水强度有显著空间差异,下游大汶河年极端降水强度最大,内蒙杭锦后旗临河一带年极端降水强度最小。极端降水站数偏多的年份,该年黄河流域总降水量也趋于偏多。汛期日极端降水强度从黄河上游到下游逐渐增强,主要发生在7-8月。  相似文献   

14.
根据玛纳斯河流域上游肯斯瓦特水文站1959—2008年气温、降水量及1984—2000年蒸发量观测资料,运用线性回归、Pearson相关系数、5 a滑动平均、Mann-Kendall检验以及Morlet小波分析方法对流域上游气候变化特征进行分析。结果表明①近50 a玛纳斯河流域上游气候总体趋向于暖湿,其中年均气温显著升高,且年内气温变化存在明显的季节差异,夏、秋两季增温趋势显著,降水量总体也呈增加趋势,但不够显著,且年内分配不均匀,降水量主要集中在春、夏两季;②近20 a流域年蒸发量围绕均值1 651.2 mm上下波动,总体呈微小增加趋势;③气温和降水量在20世纪90年代期间发生由低向高的突变,并且存在明显的年际周期变化。  相似文献   

15.
近年来,全球气候变暖趋势越来越明显,极端降水加剧了长江流域的旱涝灾害风险。利用长三角地区34个气象站1960—2012年逐日降水资料,以百分位定义极端降水事件阈值,采用趋势分析、Mann-Kendall检验、GIS空间分析等方法,在资料均一性检验和资料质量控制后,对长三角地区近53 a的极端降水的时空演变特征进行了详细分析,结果表明①长三角极端降水阈值分布在30.7~46.7之间且都在大雨范围内,部分站点接近暴雨级别,分布呈现带状分布,苏北、浙西南和浙东南沿海部分站点极端降水阈值较大,而苏南、浙北以及上海一带较小;②极端降水频次和强度存在明显的年代际差异,表现为前期明显下降而后期缓慢上升的趋势,长三角降水变得更为异常,极端降水突变主要发生在1987年;③浙江西南部和东南沿海岛屿的极端降水频次和总量均较高, R95T大值区主要分布在苏北以及浙江东南沿海;④极端降水频次的四季变化体现了一年中雨带的南北移动,同时也体现了沿海与内陆的降水差异;苏北赣榆站、浙江东部沿海及岛屿站点的降水变得较为极端,未来易发生暴雨和洪涝,而射阳及周围地区发生干旱的几率增大。  相似文献   

16.
为评价GPM卫星降水产品在长江流域的探测精度,利用长江流域224个气象站点2014年4月1日至2017年12月31日的逐日实测降水数据和GPM卫星遥感探测数据,通过相关系数R、平均绝对误差MAE、均方根误差RMSE、相对偏差RB四种指标评价了GPM卫星降水产品在长江流域年、月、日尺度上的探测精度,并运用探测率POD、误报率FAR、偏差率BIAS、公正先兆评分ETS四种指标衡量了GPM对不同量级降水的捕捉能力。结果表明:①年尺度上,GPM卫星与实测降水的R、MAE、RMSE和RB值分别为0.92,0.44,0.57 mm/d和5.68%,表现出较高的探测精度;②月尺度上,GPM卫星在冬夏两季月份与实测值的一致性较差,并明显低估了冬季月份的降水,且对夏季月份的降水估计存在较高误差;③日尺度上,GPM对弱降水的捕捉能力较强,对强降水探测能力较差;④总体而言,GPM在年月尺度上通过表现出较高的相关系数R和较低的MAE和RMSE误差值,显示出比日尺度上更高的探测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号