首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solidification behavior of undercooled Fe-Cr-Ni melts of different compositions is investigated with respect to the competitive formation of δ-bcc (ferrite) and γ-fcc phase (austenite). Containerless solidification experiments, electromagnetic levitation melting and drop tube experiments of atomized particles, show that δ (bcc) solidification is preferred in the highly undercooled melt even at compositions where δ is metastable. Time-resolved detection of the recalescence events during crystallization at different undercooling levels enable the determination of a critical undercooling for the transition to metastable bcc phase solidifcation in equilibrium fcc-type alloys. Measurements of the growth velocities of stable and metastable phases, as functions of melt undercooling prior to solidification, reveal that phase selection is controlled by nucleation. Phase selection diagrams for solidification processes as functions of alloy composition and melt undercooling are derived from two types of experiments: X-ray phase analysis of quenched samples and in situ observations of the recalescence events of undercooled melts. The experimental results fit well with the theoretical predictions of the metastable phase diagram and the improved nucleation theory presented in an earlier article. In particular, the tendency of metastable δ phase formation in a wide composition range is confirmed.  相似文献   

2.
Fe-Co alloy melts with Co contents of 10, 30, and 60 at. pct were undercooled to investigate the dependence of the primary phase on grain coarsening. A pronounced characteristic is that the metastable fcc phase in the Fe-10 at. pct Co alloy and the metastable bcc phase in the Fe-30 at. pct Co alloy will primarily nucleate when undercoolings of the melts are larger than the critical undercoolings for the formation of metastable phases in both alloys. No metastable bcc phase can be observed in the Fe-60 at. pct Co alloy, even when solidified at the maximum undercooling of ΔT = 312 K. Microstructural investigation shows that the grain size in Fe-10 and Fe-30 at. pct Co alloys increases with undercoolings when the undercoolings of the melts exceed the critical undercoolings. The grain size of the Fe-60 at. pct Co alloy solidified in the undercooling range of 30 to 312 K, in which no metastable phase can be produced, is much finer than those of the Fe-10 and Fe-30 at. pct Co alloys after the formation of metastable phases. The model for breakage of the primary metastable dendrite at the solid-liquid interface during recalescence and remelting of dendrite cores is suggested on the basis of microstructures observed in the Fe-10 and Fe-30 at. pct Co alloys. The grain coarsening after the formation of metastable phases is analyzed, indicating that the different crystal structures present after the crystallization of the primary phase may play a significant role in determining the final grain size in the undercooled Fe-Co melts.  相似文献   

3.
A modified cellular automaton (MCA) model was developed and applied to simulate the evolution of solidification microstructures of both eutectic and hypoeutectic Al-Si alloys. The present MCA model considers the equilibrium and metastable equilibrium solidification processes in a multiphase system. It accounts for the aspects including the nucleation of a new phase, the growth of primary α dendrites and two eutectic solid phases from a single liquid phase, as well as the coupling between the phase transformation and solute redistribution in liquid. The effects of alloy composition and eutectic undercooling on eutectic morphology and eutectic nucleation mode were investigated. The simulated results were compared with those obtained experimentally.  相似文献   

4.
A new technique is introduced to quantify microsegregation during rapid solidification. The quantification involves calculation of the average solute solubility in the primary phase during solidification of an Al-Cu binary alloy. The calculation is based on using volume percent eutectic and weight percent of second phase (in the eutectic), which were obtained experimentally. Neutron diffraction experiments and stereology calculation on scanning electron microscope images were done on impulse atomized Al-Cu alloys of three compositions (nominal), 5 wt pct Cu, 10 wt pct Cu, and 17 wt pct Cu, atomized under N2 and He gas. Neutron diffraction experiments yielded weight percent CuAl2 data and stereology yielded volume percent eutectic data. These two data were first used to determine the weight percent eutectic. Using the weight percent eutectic and weight percent CuAl2 in mass and volume balance equations, the average solute solubility in the primary phase could be calculated. The experimental results of the amount of eutectic, tomography results from previous work, and results from the calculations suggest that the atomized droplets are in metastable state during the nucleation undercooling of the primary phase, and the effect of metastability propagates through to the eutectic formation stage. The metastable effect is more pronounced in alloys with higher solute composition.  相似文献   

5.
Theoretical treatment of the solidification of undercooled Fe-Cr-Ni melts   总被引:5,自引:0,他引:5  
The solidification behavior of undercooled Fe-Cr-Ni melts is analyzed with respect to the competitive formation of body-centered cubic (bcc) phase (ferrite) and face-centered cubic (fcc) phase (austenite). The activation energies of homogeneous nucleation and growth velocities for both phases as functions of undercooling of the melt are calculated on the basis of current theories of nucleation and dendrite growth using data of thermodynamic properties available in the literature. As model systems for numerical calculations, the alloys Fe-18.5Cr-11Ni forming primary ferrite and Fe-18.5Cr-12.5Ni forming primary austenite under near-equilibrium solid-ification conditions are considered. Nucleation of the bcc phase is always promoted in the under-cooled primary ferrite alloy, whereas the barrier for bcc nucleation falls below that for fcc nucleation for large undercooling in primary austenite alloys. With rising undercooling, tran-sitions of the fastest growth mode were found from bcc to fcc and subsequently from fcc to bcc for the primary ferrite forming alloy and from fcc to bcc for the primary austenite forming alloy. The results of the calculations provide a basis for understanding contradictory experi-mental findings reported in the literature concerning phase selection in rapidly solidified stainless steel melts for different process conditions. Formerly Visiting Scientist at the Institut fur Raumsimulation  相似文献   

6.
Adopting a fluxing purification and cyclic superheating technique, Co-10 wt pct Si and Co-15 wt pct Si alloys had been undercooled to realize rapid solidification in this work. It was investigated that the solidification modes and microstructures of Co-Si alloys were deeply influenced by the undercooling of the melts. Both alloys solidified with a near-equilibrium mode in a low undercooling range; the peritectic reaction occurred between the primary phase and the remnant liquids, and it was followed by the eutectic reaction and eutectoid transformation. With the increase of undercooling, both alloys solidified with a nonequilibrium mode, and the peritectic reaction was restrained. As was analyzed, a metastable Co3Si phase was found in Co-10 wt pct Si alloy when a critical undercooling was achieved.  相似文献   

7.
Alloys of Co78-x Pt x B10Si12 were produced using the melt-spin process in order to study the crystallization behavior and ensuing magnetic properties of the Co-Pt amorphous alloys as a function of the Pt content. We showed that when x>15, well below its stoichiometric composition, CoPt intermetallic compound crystallized in the amorphous alloy. Below this composition, the main crystallization product was Co with Pt dissolved in its lattice. The nucleation of CoPt greatly altered the crystallized microstructures and magnetic properties of the Co-Pt amorphous alloys during annealing. In spite of the nucleation of CoPt with its high magnetic anisotropy, the highest coercivity was obtained when x was 15, free of the CoPt grains. It was also concluded that the Pt addition, in general, triggered crystallization to occur at a progressively lower temperature.  相似文献   

8.
During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PbSn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibria, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the “step rule” resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.  相似文献   

9.
The droplet emulsion technique, which involves dispersal of a bulk liquid alloy into a collection of fine droplets (5 to 30μm), was applied to Sn-Sb alloys to yield high levels of controlled undercooling. The maximum undercooling levels achieved varied from 179 °C for pure Sn to 113 °C for a Sn-16 at. pct Sb alloy. Analysis of hypoperitectic alloy samples (alloys with an Sb content less than that of the liquid at the peritectic temperature) indicates that solute trapping occurs during solidification at the levels of undercooling and cooling rate investigated, yielding nearly homogeneousβ-tin solid solutions with compositions approaching those of the bulk alloys. With increasing undercooling and/or cooling rate, hyperperitectic alloys exhibit a transition from a highly segregated structure consisting of faceted primary intermetallic phase and cellularβ to a structure consisting primarily of a supersaturated tin-rich solid solution. Lattice constant measurements confirm that virtually complete supersaturation ofβ-tin was achieved in emulsion samples cooled at 200 °C ss−1 for compositions up to approximately 20 at. pct Sb. The development and characteristics of subsequent solid-state precipitation were used to guide the interpretation of the often complex solidification reaction sequences in the hyperperitectic alloys. The formation of supersaturatedβ-tin solid solutions in the undercooled samples is related to the appropriate metastable phase equilibria and the development of solute trapping. Formerly Graduate Student, Department of Materials Science and Engineering, University of Wisconsin-Madison  相似文献   

10.
The undercooling behavior of fine droplet samples of Sn-rich, Sn-Sb alloys was investigated using differential thermal analysis (DTA). Undercooling levels measured during cooling from the liquid state follow the trend of the intermetallic phase liquidus, suggesting that solidification of all droplet samples (even those which solidify to yield a supersaturatedβ-tin product) was probably initiated with formation of primary intermetallic phase. Heterogeneous nucleation thermal cycling treatments were then used to measure the relative catalytic potency of primary intermetallic phases in this system for nucleation ofβ-tin during cooling. Crystallization reactions below the equilibrium peritectic temperature of 250 °C, at 187 °C and 230 °C, have been interpreted as corresponding to nucleation ofβ on Sn3Sb2 and SnSb substrates, respectively. The behavior observed in the Sn-Sb system can be generalized to guide the interpretation of heterogeneous catalysis and the analysis of solidification pathways in other peritectic alloy systems. Formerly Graduate Student, Department of Materials Science and Engineering, University of Wisconsin-Madison  相似文献   

11.
Solidification of highly undercooled Sn- Pb alloy droplets   总被引:1,自引:0,他引:1  
Experimental work is described on undercooling and structure of tin-lead droplets emulsified in oil. The droplets, predominantly in the size range of 10 to 20 μm, were cooled at rates (just before nucleation) ranging from about 10-1 K per second to 106 K per second. The higher cooling rates were obtained by a newly developed technique of quenching the emulsified droplets in a cold liquid. Measured undercoolings (at the lower cooling rates) ranged up to about 100 K. Structures obtained depend strongly on undercooling, cooling rate before and after nucleation, and alloy composition. Droplets containing up to 5 wt pct Pb were apparently single phase when undercooled and rapidly quenched. Droplets in the composition range of about 25 wt pct to 90 wt pct Pb solidified dendritically, even at the most rapid quench rates employed, apparently because these alloys undercooled only slightly before nucleation of the primary phase. Formerly Graduate Research Assistant and Postdoctoral Associate in the Department of Materials Science and Engineering, Massachusetts Institute of Technology.  相似文献   

12.
The metastable L12-Al3Zr phase has been obtained as a solidification product on melt-spinning ternary Al-X-Zr (X = Cu, Ni) alloys. Different non-equilibrium effects of the metastable Al3Zr phase (L12) have been observed in the as-solidified and heat-treated alloys. The solidification sequence begins with the formation of the L12-Al3Zr (cubic) phase as a primary phase, followed by heterogeneous nucleation of α-Al. Morphological changes in the primary phase result in a shape transformation from a faceted cube to one with concave interfaces and protrusions along the corners, having a preferential growth along the 〈111〉 direction. This is brought about by a kinetic effect taking place during the growth of the L12-Al3Zr phase into the surrounding liquid, as the alloy is quenched. In another instance, the primary L12-Al3Zr phase nucleates as solid-state precipitates of the same L12-Al3Zr phase on annealing, by dissolution and reprecipitation of solute, under the influence of moving grain boundaries. A third case shows the metastable L12 phase nucleating on the equilibrium DO23-Al3Zr phase, upon solidification. This is attributed to the sluggish growth kinetics of the latter.  相似文献   

13.
The microstructures of rapidly-solidified binary TiAl alloys containing 46–70 at.% Al have been studied using optical and analytical transmission electron microscopy (AEM). The phases present in the alloys and their distribution were found to be a sensitive function of composition. Essentially single-phase microstructures were seen for alloys with 46 at.% Al, 50–52 at.% Al and 60–65 at.% A. The primary solidification phases present in these alloys were α-Ti, ordered γ-TiAl and disordered cubic TiAl, respectively. The 60–65 at.% Al alloys showed indications of the solid-state formation of long-period superlattice structures based upon γ-TiAl, due to the excess Al. In other composition ranges, two-phase microstructures were seen. The 48 at.% Al alloy contained α2-Ti3Al + γ-TiAl, with α2-Ti3Al as the primary solidification phase. Alloys from 53 to 55 at.% Al were also α2-Ti3Al + γ-TiAl, but with γ-TiAl as the primary solidification phase. The 70 at.% Al alloy was two phase TiAl2 + TiAl3. A strong effect of interstitial oxygen content on the α2-Ti3Al + γ-TiAl phase relations was also seen. Comparison of these results with the equilibrium phase diagram and with ingot studies of the same alloys showed that most of the microstructures produced by rapid solidification were metastable. A possible metastable phase diagram for TiAl which is consistent with the results is proposed.  相似文献   

14.
The undercooling of aluminum   总被引:1,自引:0,他引:1  
An important parameter affecting microstructure development during solidification is the amount of undercooling prior to nucleation. The undercooling potential of aluminum has been assessed by thermal analysis measurements on powder dispersions of the liquid metal. A number of variables have been identified which influence the undercooling of powder Al samples including powder coating, powder size, melt cooling rate, and melt superheat. Surface analysis by Auger electron spectroscopy indicates that changing the medium in which the powders are produced is an effective method of altering the coating chemistry. Factorial design analysis has been employed to quantify the potential of processing variables to increase the undercooling level obtainable in aluminum. The factorial analysis indicates that control of the powder coating through changing the medium in which the powders are produced is most effective in decreasing the nucleation temperature. Additionally, the finest powders produced in the medium which induces the least catalytic coating, when cooled at high rates,T = 500 °C/s, from low superheats,T s = 710 °C, are found to achieve the deepest undercooling, ΔT = 175 °C. These studies provide the basis for further increases in undercooling and for future investigations into the solidification reactions which produce both stable and metastable structures in aluminum alloys. Formerly Research Assistant in the Department of Metallurgical and Mineral Engineering, University of Wisconsin-Madison  相似文献   

15.
In order to elucidate the nature of the heterogeneous nucleation, a differential scanning calorimetry (DSC) thermal analysis of pure Fe and Fe-Ni alloys (Ni content: 1.0 to 29.3 mass pct) containing TiN, Al2O3, and Ti2O3 was conducted. Then, special attention was paid to the difference in the phase of the primary crystal nucleated by the triggering effect of a catalyst (nucleating agent). The solidification and transformation mode appearing during cooling in these alloys is classified into three cases: F mode, FA mode, and A mode. The change of modes and the critical undercooling (ΔT) depend on the kind of catalyst used as well as the chemical composition (Ni content). In addition, in spite of the kind of primary crystal, the value of ΔT is always small in the order of TiN, Al2O3, and Ti2O3. As a matter of fact, only TiN has a practical effect as a catalyst on the triggered nucleation of the primary crystal of the δ phase. None of them has a practical effect on the nucleation of the primary crystal of the γ phase. This article is based on a presentation given in the Mills Symposium entitled “Metals, Slags, Glasses: High Temperature Properties & Phenomena,” which took place at The Institute of Materials in London, England, on August 22–23, 2002.  相似文献   

16.
Nucleation of Fe-intermetallic phases (i.e. binary Al-Fe, α-AlFeSi, β-AlFeSi, δ-AlFeSi, and q1-AlFeSi phases) on the surface of different inclusions in six experimental Al-Si-Fe alloys was studied through a quantitative evaluation of the number of inclusion particles that have a direct physical contact with the nucleated phase as seen through the optical microscope. It was found that nucleation of each of the Fe-intermetallic phases was promoted on the surface of several inclusions under the same conditions of alloy composition and cooling rates. Some inclusions exhibited high potency for the nucleation of particular Fe-intermetallic phases under certain conditions and poor potency under other conditions. The potent nucleants for the primary α-Al phase such as γ-Al2O3 exhibited poor potency for the nucleation of the Fe-intermetallic particles that lie within the primary phase (intragranular particles). Reactive inclusions such as CaO and SiC are very potent nucleants for the intragranular Fe-intermetallic phase particles. The nucleation of the Fe-intermetallic phases in Al-Si-Fe alloys obeys the general features of nucleation, in particular, the effect of cooling rate and solute concentration on the potency of the nucleant particles: (1) it was observed that increasing the cooling rate enhances the heterogeneous nucleation of the Fe-intermetallic phases on the surface of different inclusions, and (2) the nucleation potency of inclusion particles in both α-Al and interdendritic regions improves with increasing solute concentration up to a certain level. Above this level, the solute concentration poisons the nucleation sites. Nucleation of the Fe-intermetallics in the alloys studied does not seem to be largely affected by the type of the nucleating surface.  相似文献   

17.
18.
The microstructural development associated with solidification in undercooled Fe-Ni alloys has been reported in different studies to follow various pathways, with apparent dissimilarities existing as a function of sample size and processing conditions. In order to identify the possible hierarchy of microstructural pathways and transitions, a systematic evaluation of the microstructural evolution in undercooled Fe-Ni alloys was performed on uniformly processed samples covering seven orders of magnitude in volume. At appropriate undercooling levels, alternate solidification pathways become thermodynamically possible and metastable product structures can result from the operation of competitive solidification kinetics. For thermal history evaluation, a heat flow analysis was applied and tested with large Fe-Ni alloy particles (1 to 3 mm) to assess undercooling potential. Alloy powders (10 to 150 μm), with large liquid undercoolings, were studied under the same composition and processing conditions to evaluate the solidification kinetics and microstructural evolution, including face-centered cubic (fcc)/body centered cubic (bcc) phase selection and the thermal stability of a retained metastable bcc phase. The identification of microstructural transitions with controlled variations in sample size and composition during containerless solidification processing was used to develop a microstructure map which delineates regimes of structural evolutions and provides a unified analysis of experimental observations in the Fe-Ni system.  相似文献   

19.
Liu  L. J.  Lu  S. Y.  Qin  Q. Y.  Yang  L.  Li  J. F. 《Metallurgical and Materials Transactions A》2022,53(3):1013-1024

Ni75B25 alloy was solidified at various undercooling. The formation and subsequent transformation of metastable Ni23B6 phase were clearly identified. If undercooling prior to nucleation is less than a critical value of 240 K (240 °C), the alloy solidifies completely into Ni3B phase. At larger undercooling, metastable Ni23B6 phase primarily forms in the melt but then is decomposed into α-Ni and Ni3B through a eutectoid reaction. The decomposition simultaneously triggers the rapid solidification of residual liquid, due to which a second temperature recalescence occurs. The α-Ni/Ni3B eutectoid is partially remelted if temperature exceeds the eutectic temperature during the second recalescence. Then, residual Ni3B grows into coarse round grains while the remaining liquid re-solidifies into α-Ni/Ni3B eutectic structure in the remelted region. In the case that the eutectic temperature is not reached, the eutectoid product with dot α-Ni distributing in Ni3B matrix is retained in the solidification structure. A longer delay time between the two temperature recalescence events means less residual liquid, lower recalescence temperature and thus depressed remelting. The formation competition between Ni3B and Ni23B6 phases in the alloy melt is nucleation controlled. The heterogeneous site in Ni75B25 alloy melt is a better nucleation substrate for Ni23B6 phase than for Ni3B phase.

Graphical abstract
  相似文献   

20.
The competitive formation of metastable and stable phases during nonequilibrium processing of Al-Ge alloys and the corresponding metastable phase equilibria have been investigated. For germanium concentrations in the range 30 to 50 at. pct, it is shown that the four metastable phases can be ranked in order of decreasing stability as follows: monoclinic (P21/c), rhombohedral (R-C), orthorhombic (Pbca), and hexagonal (P6/mmm). Their formation depends not only on the transformation temperature(e.g., the liquid undercooling), but also on the presence of appropriate heterogeneous nucleation sites. For example, the orthorhombic phase has only been observed in amorphous films after rapid annealing/crystallization treatments. It is also shown that all of these phases form metastable equilibria with α-aluminum only,i.e., no metastable phase equilibria appear to exist between any metastable phase and β-germanium or between any two metastable phases. Consequently, it is not possible to draw a single metastable phase diagram that incorporates all of these phases with phase boundaries that represent their metastable equilibria; rather, separate diagrams should be drawn for each metastable phase. It is noted that these diagrams should extend only to the metastable phase field rather than all the way to pure germanium: for compositions richer in germanium, the results indicate that the metastable phase forms and then remelts upon the formation of germanium or a more stable, germanium-enriched metastable phase. Furthermore, it is proposed that this behavior is rather general in nature. Finally, it is concluded that the production of metastable phases in bulk form, in systems such as this where so many reactions occur simultaneously and competitively, might be impossible using solidification processing approaches. Formerly with the Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号