首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
以火龙果果皮为原料,优化红色素的超声波辅助提取工艺,考察超声波功率、提取时间、提取温度、p H和液料比5个因素对红色素提取率的影响。确定火龙果果皮红色素的超声波辅助提取工艺条件为:提取溶剂50%乙醇,超声波功率300 W,提取温度30℃,提取p H 4.0,料液比1∶8(g/m L),超声波作用时间15 min。与常规提取法相比,超声波辅助提取工艺提取率具有提取时间短,提取溶剂用量少,提取效率高的优点。  相似文献   

2.
花生壳水溶性膳食纤维微波辅助提取工艺及其性质研究   总被引:2,自引:1,他引:1  
对微波辅助提取花生壳水溶性膳食纤维(SDF)的工艺及其性质进行研究,探讨了料液比、柠檬酸质量分数、微波功率、微波时间对SDF得率的影响。在单因素试验基础上,通过L9(34)正交试验确定最佳提取工艺。方差分析结果表明:料液比、柠檬酸浓度、微波功率、微波时间对SDF得率有极显著影响。花生壳SDF提取的最佳工艺为:柠檬酸质量分数为5%、料液比为1∶20、微波功率为320 W、处理时间为30 s,此时花生壳水溶性膳食纤维的得率为17.25%。所得SDF具有良好的持水性、溶胀性、结合水力和一定的阳离子交换能力,是一种优质膳食纤维。  相似文献   

3.
为优化超声波法提取苣荬菜中的水溶性膳食纤维工艺,考察提取液pH、料液比、超声功率、提取时间和温度等单因素对水溶性膳食纤维素得率的影响,并通过三因素三水平Box-Benhnken试验设计及响应面分析优化工艺参数。结果表明,最佳提取条件为:pH 3,料液比1:25 g/mL,超声波功率320 W,超声时间22 min,提取温度70℃。在此条件下苣荬菜中水溶性膳食纤维的得率为3.65%±0.02%。水溶性膳食纤维的持水力为465%,溶胀力为5.53mL/g。  相似文献   

4.
《食品工业科技》2013,(01):229-232
以辽西地区扁杏仁皮为原料,超声波协同酶法制备水溶性膳食纤维(SDF)。对超声波提取参数进行优化,然后选取液料比、复合纤维素酶添加量及酶解时间进行单因素实验。采用液料比、酶添加量和酶解时间为变量,以SDF提取率为响应值,进行响应面实验设计,优化SDF制备工艺。结果表明,超声波辅助提取参数为:功率500W,处理时间15min。最佳工艺参数为:液料比17:1,酶添加量1.8%,酶解时间3.5h,酶解温度55℃;此工艺条件下,杏仁皮SDF提取率可达13.27%。SDF的持水性达到8.31g/g,溶胀性为6.48mL/g。杏仁皮水溶性膳食纤维具有良好的理化性能。   相似文献   

5.
以米糠为原料,采用超声辅助酶法提取米糠水溶性膳食纤维,探讨加酶量、超声时间、超声功率和料液比对得率的影响,以水溶性膳食纤维的得率为响应值,通过Box-Behnken实验设计进行超声辅助酶法提取米糠水溶性膳食纤维的工艺优化研究。结果表明:影响米糠水溶性膳食纤维得率的主次因素依次为加酶量、料液比、超声时间、超声功率,最佳提取工艺为酶终浓度5.3%、超声时间5min、超声功率415W、料液比1∶24(g/m L)。在此条件下,米糠水溶性膳食纤维得率最高,预测值为9.22%,验证实验得到的得率为9.36%。   相似文献   

6.
超声波辅助提取花生壳水溶性膳食纤维工艺研究   总被引:3,自引:0,他引:3  
以花生壳为原料,采用超声波辅助法提取水溶性膳食纤维,在单因素试验基础上,通过正交试验确定提取花生壳水溶性膳食纤维最优工艺。结果表明,提取花生壳水溶性膳食纤维最优工艺条件为:提取温度80℃、提取时间20 min、料液比1:15(g/mL)、超声波功率320 W;在此工艺条件下,花生壳水溶性膳食纤维提取率为18.54%;所得水溶性膳食纤维膨胀力为6.73 ml/g、持水力为7.21 g/g,成品呈黄褐色,气味良好。  相似文献   

7.
采用超声波-微波协同法提取沙棘果皮渣中可溶性膳食纤维的工艺条件。通过单因素实验研究柠檬酸质量分数、料液比、微波功率、提取时间对沙棘果皮渣中可溶性膳食纤维提取得率的影响,进一步用Box-Behnken法优化沙棘果皮渣中可溶性膳食纤维最佳提取工艺。结果表明,在柠檬酸质量分数为3%,料液比1:16 g/mL,微波功率620 W,提取时间60 min的条件下,沙棘果皮渣中可溶性膳食纤维提取效果最佳,提取得率为11.07%±0.26%,与模型预测值10.83%误差为2.22%。制备的沙棘果皮渣可溶性膳食纤维持水力为8.02 g/g,持油力为4.19 g/g,膨胀力为3.82 mL/g。超声波-微波协同法是一种提取沙棘果皮渣中可溶性膳食纤维的有效方法。  相似文献   

8.
以板栗壳为原料,通过对枯草芽孢杆菌发酵提取水溶性膳食纤维(SDF)的工艺进行研究,考察了原料粒度、料液比、接种量及发酵时间对水溶性膳食纤维得率的影响。研究结果表明,发酵法提取板栗壳SDF最佳条件为原料粒度0.180 mm、料液比1∶55(g/mL),接种量10%、发酵时间24 h,在此优化条件下SDF得率为19.75%;并对提取得到的板栗壳SDF进行了脱色工艺的优化,研究结果表明,过氧化氢对板栗壳SDF的最佳脱色工艺为H2O2浓度4%、脱色时间4 h、pH 10、脱色温度55℃,在此优化条件下板栗壳膳食纤维脱色率为85.26%。  相似文献   

9.
超声波协同酶法制备杏仁皮中水溶性膳食纤维及理化研究   总被引:1,自引:0,他引:1  
以辽西地区扁杏仁皮为原料,超声波协同酶法制备水溶性膳食纤维(SDF).对超声波提取参数进行优化,然后选取液料比、复合纤维素酶添加量及酶解时间进行单因素实验.采用液料比、酶添加量和酶解时间为变量,以SDF提取率为响应值,进行响应面实验设计,优化SDF制备工艺.结果表明,超声波辅助提取参数为:功率500W,处理时间15min.最佳工艺参数为:液料比17:1,酶添加量1.8%,酶解时间3.5h,酶解温度55℃;此工艺条件下,杏仁皮SDF提取率可达13.27%.SDF的持水性达到8.31g/g,溶胀性为6.48mL/g.杏仁皮水溶性膳食纤维具有良好的理化性能.  相似文献   

10.
《食品工业科技》2013,(08):266-269
以梵净山野生阳荷为材料,采用超声波法在提取功率、温度、时间和料液比4个单因素实验的基础上,用L9(34)正交实验法,对野生阳荷水溶性膳食纤维(SDF)的工艺条件进行了优化。结果表明,最佳工艺条件为:提取时间39min、超声功率120W、浸提温度63℃、料液比1∶41(g/mL),在此优化条件下,SDF的提取率为3.33%。   相似文献   

11.
以红肉红皮(RP)和白肉红皮(WP)火龙果果皮为原料,采用超声波辅助乙醇浸提法提取火龙果果皮红色素,并对其粗提物进行鉴定,通过单因素与正交试验优化提取工艺,同时测定两种果皮红色素提纯物质的总还原能力和自由基抗氧化活性。结果表明,经光谱法和HPLC-MS/MS联用法双重检测,火龙果果皮红色素为甜菜红素。WP中甜菜红素的最佳提取条件为:40%乙醇、料液比1:40 (g/mL)、超声时间25 min、超声温度40 ℃,色素最大得率为0.856%。RP中甜菜红素的最佳提取条件为:40%乙醇、料液比1:30 (g/mL)、超声时间15 min、超声温度30 ℃,色素最大得率为0.915%。RP以其纯化工艺流程获得的提纯物产量是WP的1.232倍。在一定浓度范围内,WP和RP火龙果果皮甜菜红素都有较强的总还原能力,但略低于VC,清除DPPH·自由基、羟自由基(·OH)的IC50分别为1.15和0.95 mg/mL、5.95和4.57 mg/mL,两者对亚硝酸根(NO2-)最大清除率分别为22.90%和25.10%,红肉火龙果果皮甜菜红素的综合抗氧化能力优于白肉红皮品种。  相似文献   

12.
以苹果渣为原料,研究水浴法和超声法制备苹果渣可溶性膳食纤维及其性能。结果表明水浴法制备苹果渣可溶膳食纤维的适合工艺条件为:水浴温度80℃,水浴pH5,水浴料液比1∶20g/mL和水浴时间90min,在此条件下苹果渣SDF得率为12.76%;超声法制备苹果渣可溶膳食纤维的适合工艺条件为:超声温度60℃,超声pH5,超声料液比1∶20g/mL,超声时间45min和超声功率225W,在此条件下苹果渣SDF得率为14.14%。与水浴法相比超声法能加快苹果渣组织水解,扫描电镜分析表明超声对苹果渣纤维表面的微结构有破坏作用。在相同浓度下,苹果渣SDF抗氧化活性比苹果渣抗氧化活性高很多,但都远低于商业合成抗氧化BHA。   相似文献   

13.
以生姜为原料,采用超声水提法和超声结合酶法提取生姜中水溶性膳食纤维,探讨料液比、超声时间、超声功率、加酶量等对提取率的影响,通过正交试验优化工艺条件,并对其功能性进行研究。结果表明,超声水提取最佳工艺条件为料液比1:30、超声时间25min、超声功率100W,生姜中水溶性膳食纤维提取率最高为10.02%;超声结合酶法提取最佳工艺条件为加酶量3%、料液比1:25、超声时间25min、超声功率100W,生姜中水溶性膳食纤维提取率为13.86%,比超声水提法提取率提高了38.2%。生姜中水溶性膳食纤维对.OH和O-2.均表现出较强的清除能力,其IC50分别为2.58mg/mL和0.42mg/mL,对DPPH自由基具有一定的清除作用,清除率可达40%以上;生姜中水溶性膳食纤维的持水力为359%,膨胀力为2.86mL/g。  相似文献   

14.
以高浓度乙醇提取黄酮后的麻竹叶残渣为原料,采用响应面法优化了麻竹叶SDF的超声辅助碱法提取工艺,并测定了SDF的持水力、膨胀力及持油力等特性.结果 表明,在超声功率为250 W时,SDF的最佳提取工艺为:时间68 min、温度66℃、料液比1∶19 (g/mL)、NaOH浓度8.5%;在此条件下,麻竹叶SDF的得率为4...  相似文献   

15.
该研究采用超声波辅助碱法提取金针菇可溶性膳食纤维(SDF),利用响应面法对金针菇SDF的提取工艺进行优化。选取液料比、超声时间、超声温度、碱液质量分数为影响因素,以金针菇SDF提取率为响应值,应用Box-Behnken试验设计建立数学模型,进行响应面分析,并对其理化性质进行检测。结果表明,超声波辅助碱法提取金针菇SDF的优化工艺条件为超声功率150 W,液料比10∶1(mL∶g)、超声时间69 min,超声温度49 ℃,碱液质量分数5.10%。在此条件下金针菇SDF提取率可达20.25%,持水力为5.18 g/g,膨胀性为4.64 mL/g,持油力为4.77 g/g。  相似文献   

16.
采用超声预处理-柠檬酸辅助亚临界水提法从小麦麸皮(以下简称“麦麸”)中提取水溶性膳食纤维。通过单因素实验考察超声预处理功率、柠檬酸/麦麸液固比、亚临界水提取温度和时间对麦麸水溶性膳食纤维得率的影响,在此基础上,采用响应面优化法,对提取工艺参数进行优化。结果表明,最佳提取条件为:超声预处理功率195 W,柠檬酸/麦麸液固比39:1 mL/g,亚临界水提取温度和时间分别为179 ℃和30 min。此时,麦麸水溶性膳食纤维的得率为41.00% ± 0.29%。因此,该方法能够提高麦麸水溶性膳食纤维的得率,且具有提取时间短、绿色、环保等优点,为工业化生产麦麸水溶性膳食纤维提供技术参考。  相似文献   

17.
运用内部沸腾法提取火龙果果皮多糖,考察解吸剂浓度、解吸剂用量、解吸时间、提取温度、提取时间、料液比等六个因素对火龙果果皮多糖提取率的影响,在单因素实验基础上,设计L9(33)正交实验,优化火龙果果皮多糖提取工艺。结果表明内部沸腾法提取火龙果果皮多糖的最优工艺为:解吸剂浓度为80%乙醇、解吸剂用量为5 mL/g、解吸时间为15 min,提取温度为90 ℃,料液比为1:25 (g/mL)、提取时间为6 min。在该条件下火龙果果皮多糖提取率为5.81%。内部沸腾法提取火龙果果皮多糖的工艺条件稳定可行,并且具用时短、操作简单、无毒无污染及提取效果好等优势。  相似文献   

18.
采用超声波法提取红薯叶中的水溶性膳食纤维,考察柠檬酸质量分数、料液比、超声功率和时间、提取温度等单因素对提取效果的影响,并采用Box-Benhnken中心组合实验设计和响应面分析法优化提取工艺。结果表明,红薯叶中水溶性膳食纤维最佳提取条件为:柠檬酸质量分数4%,料液比1∶35,超声波功率240 W,超声时间21 min,提取温度60℃,在此条件下水溶性膳食纤维的得率为4.37%±0.04%。该方法操作简便,周期短,提取效果较好。   相似文献   

19.
麻明友  刘建本  吴显明  陈上  温晓 《食品科学》2010,31(20):266-269
为研究柑橘皮总黄酮的超声微波双辅助提取效果,对柑橘皮先进行超声再进行微波提取。应用单因素和正交试验,研究乙醇体积分数、固液比、微波功率及作用时间等因素对柑橘皮总黄酮提取率的影响。结果表明:采用超声微波双辅助提取技术得到的黄酮提取率较单独采用超声或微波辅助提取率高。以70% 乙醇为溶剂、固液比1:20(g/mL)、40℃超声处理30min、微波功率400W、微波时间3min 得到的总黄酮提取率为3.11%,结果较为理想。  相似文献   

20.
松仁红衣多酚的提取及体外抗氧化活性研究   总被引:2,自引:0,他引:2  
利用超声波辅助乙醇溶剂浸提法,从松仁红衣中提取具有抗氧化活性的多酚类物质。通过单因素和正交实验,研究乙醇浓度、提取温度、料液比、超声功率、超声时间对多酚得率的影响,确定了提取多酚的最佳工艺条件:乙醇浓度60%、提取温度60℃、料液比1∶20(g/m L)、超声时间90min、超声功率300W,此条件下所得提取液的多酚得率为2.36%。并进行了松仁红衣多酚的体外抗氧化活性实验,结果表明松仁红衣多酚对羟自由基、DPPH自由基及过氧化氢均具有清除作用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号