首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
《Composites Part A》2002,33(4):577-581
The thermal conductivity of the unidirectional copper matrix–carbon fibre composite is characterised and analysed in directions parallel and transverse to the carbon fibre orientation. Unidirectional samples with different fibre content were produced by diffusion bonding of continuous copper-coated carbon fibre tows. The thermal diffusivity was measured in two main orientations to the fibre direction by the laser-flash technique. The longitudinal and transverse thermal conductivity was then calculated and results were compared with simple analytical models. Measurements revealed decreasing thermal conductivity as the fibre volume content in the composite increased and the transverse thermal conductivity of the unidirectional samples presented much lower values in comparison to the longitudinal one.  相似文献   

2.
Mixtures of perfectly conducting fibres and spheres, as well as mixtures of fibres of different aspect ratios, were simulated using a Dissipative Particle Dynamics (DPD) method, and the connectivity of the resulting assemblies was analysed using a Monte Carlo algorithm to predict the threshold volume fraction of filler material required for electrical percolation. For both isotropic and uniaxially oriented fibre–sphere mixtures, it was found that gradually replacing fibres with an equivalent volume of spheres increased the percolation threshold. By contrast, in aligned mixtures of fibres of two different aspect ratios, replacing a small fraction of higher aspect ratio fibres with shorter fibres led to a reduction in the percolation threshold, since the shorter fibres orient less well and provide bridging links between the highly oriented longer fibres. These theoretical results suggest that mixtures of fibres of different aspect ratio may be helpful in reducing the volume fraction of high aspect ratio filler particles (such as multi-wall carbon nanotubes) required to achieve significant electrical conductivity in composite materials.  相似文献   

3.
填充型聚合物基复合材料的导电和导热性能   总被引:7,自引:0,他引:7  
研究了高密度聚乙烯为基体、炭黑和炭纤维为填料复合体系的导电和导热性能。发现当导电填料的含量达到渗流阈值时,复合材料的电导率急剧升高;而在渗流阈值附近,其热导率未出现突变。这表明电导渗流现象不完全是由导电粒子通过物理接触生成导电链所致。其导电机制是相当数量的导电粒子相互发生隧道效应。  相似文献   

4.
The d.c, electrical properties of 80×80×3 mm3 polypropylene plaques filled with 6.5 μm diameter stainless steel fibres have been studied for volume fractions in the vicinity of a critical threshold at which the volume resistivity changes very rapidly with filler concentration. By the use of very low power inputs to eliminate any possibility of local temperature changes, the samples have been established to be ohmic conductors with resistivities ranging from 12 to 0.61 Ω cm for fibre volume fractions of 1 to 3%. It is suggested that percolation conditions i.e. continuous chains of metal fibres are produced at low volume fraction of filler because of a special fibre geometry i.e. a substantial proportion of the fibres are three dimensionally folded into shapes of roughly helical form, thus enhancing the probabilities of contact between adjacent fibres. For simplicity a model structure of perfect helices with identical diameters and pitch has been examined. The model leads to a critical volume fraction at the percolation threshold, which is in good agreement with experiment and proportional to the square of the ratio of fibre diameter to helix diameter. The threshold resistivity range predicted by the model is also a function of fibre and helix diameter and this resistivity also decreases with mean fibre length. It is argued further that there exists an optimum value of fibre aspect ratio for which the critical volume fraction is a minimum. The predicted threshold resistivity is in good agree ment with experiment providing that a small amount of the size coating is assumed to have been removed during manufacture of the plaques, thus allowing a small fraction of the fibre fibre contacts to be conducting.  相似文献   

5.
Cobalt compound nanowires were dispersed in a transparent nonconductive polymer film by merely stirring, and the film's transparency and electrical conductivity were examined. This composite film is a unique system in which the average length of the nanowires exceeds the film's thickness. Even in such a system, a percolation threshold existed for the electric conductivity in the direction of the film thickness, and the value was 0.18 vol%. The electric conductivity value changed from ~1 × 10(-12) S/cm to ~1 × 10(-3) S/cm when the volume fraction exceeded the threshold. The electric conductivity apparently followed the percolation model until the volume fraction of the nanowires was about 0.45 vol %. The visible light transmission and electric conductivity of the composite film of about 1 vol % nanowires were 92% and 5 × 10(-3) S/cm, respectively. Moreover, the electric conductivity in the direction parallel to the film surface did not depend on the amount of the dispersed nanowires, and its value was about 1 × 10(-14) S/cm. Even in a weak magnetic field of about 100 mT, the nanowires were aligned in a vertical and parallel direction to the film surface, and the electric conductivity of each aligned composite film was 2.0 × 10(-2) S/cm and 2.1 × 10(-12) S/cm. The relation between the average wire length and the electric conductivity was examined, and the effect of the magnetic alignment on that relation was also examined.  相似文献   

6.
A mixed micromechanics model was developed to predict the overall electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Two electrical conductivity mechanisms, electron hopping and conductive networks, were incorporated into the model by introducing an interphase layer and considering the effective aspect ratio of CNTs. It was found that the modeling results agree well with the experimental data for both single-wall carbon nanotube and multi-wall carbon nanotube based nanocomposites. Simulation results suggest that both electron hopping and conductive networks contribute to the electrical conductivity of the nanocomposites, while conductive networks become dominant as CNT volume fraction increases. It was also indicated that the sizes of CNTs have significant effects on the percolation threshold and the overall electrical conductivity of the nanocomposites. This developed model is expected to provide a more accurate prediction on the electrical conductivity of CNT–polymer nanocomposites and useful guidelines for the design and optimization of conductive polymer nanocomposites.  相似文献   

7.
碳纤维增强水泥复合材料的电导性能及其应用   总被引:19,自引:2,他引:17       下载免费PDF全文
研究了碳纤维增强水泥复合材料的电导性能, 用扫描电子显微镜(SEM ) 观察了材料产生电导渗流时的显微结构, 讨论了纤维掺量和纤维长度对电导性能的影响以及受载过程中材料电导率的变化规律。结果表明, 适当控制碳纤维的尺寸、含量, 可以明显提高材料的电导性能; 材料结构中存在电导渗流现象, 渗流阈值随受载过程而变化; 碳纤维增强水泥复合材料能够作为本征机敏材料, 反应试件受载时的应力应变关系。  相似文献   

8.
This paper investigates the effect of fibre volume fraction on the fatigue behaviour and damage mechanisms of carbon/epoxy laminates. Epoxy resin and unidirectional carbon/epoxy specimens with two different fibre volume fractions are tested under quasi-static tensile and tension–tension fatigue loads at angles of 0°, 45° and 90°. Fracture surfaces are studied with scanning electron microscopy. The results show that stiffness and strength increase with increasing fibre volume fractions. The damage behaviour of off-axis specimens changes with increasing fibre volume content and the height of the applied cyclic load. While matrix cracking and interfacial debonding are dominating damage mechanisms in specimens with low fibre content, fibre bridging and pull out are monitored with increasing fibre content. The higher the applied load in fatigue tests transverse to fibre direction, the more similar behave specimens with different fibre volume fractions.  相似文献   

9.
Electrical conductivity of carbon fiber reinforced cement composite (CFRCC) was measured. The conductivity of specimens increased by several orders of magnitude while the volume fraction of fibers reached a higher value than the critic concentration. The microstructure associated with electrical percolation phenomena was observed. The mechanism of conduction was interpreted as being due to fibers touching each other. The changes of electrical conductivity under three different loading levels were investigated. The percolation threshold value decreased with loading. The relative changes of electrical conductivity both under single loading and cyclic loading could sense the stress in non-elastic, elastic and fracture region with sensitive response. The influences of fiber volume fraction and fiber length on the sensitivity of electrical conductivity measurement were discussed. The results provide some new information for the fabrication of conductive and intrinsically smart carbon fiber reinforced cement composites.  相似文献   

10.
采用石墨热压还原法制备Cu/Cu_(2)O金属陶瓷复合材料,并测试不同导通相(Cu)体积含量Cu/Cu_(2)O金属陶瓷复合材料的直流电导率。为了实现对导通相形状、大小和分布状态的定量表征,通过对复合材料微观结构图像的二值化处理进行导通相分形维数计算,结合Cu/Cu_(2)O金属陶瓷复合材料的电逾渗行为,分析复合材料微观结构与电性能之间的对应关系。结果表明:随着导通相体积分数的增加,逾渗无限团簇和逾渗骨架的总量随之增大,但逾渗骨架密度在逾渗阈值附近波动。此外,Cu/Cu_(2)O金属陶瓷复合材料垂直热压方向与平行热压方向的分形维数相差约0.1。分形计算为定量表征导体/绝缘体双相复合材料中导通相的微观结构提供了一种计算方法,有助于对第二相随机分布的复合材料实现微观结构定量表征。  相似文献   

11.
Computational micromechanics of composites is an emerging tool required for virtual materials design (VMD) to address the effect of different variables involved before materials are manufactured. This strategy will avoid unnecessary costs, reducing trial-and-error campaigns leading to fast material developments for tailored properties. In this work, the effect of the fibre cross section on the transverse behaviour of unidirectional fibre composites has been evaluated by means of computational micromechanics. To this end, periodic representative volume elements containing uniform and random dispersions of 50% of parallel non-circular fibres with lobular, polygonal and elliptical shapes were generated. Fibre/matrix interface failure as well as matrix plasticity/damage were considered as the fundamental failure mechanisms operating at the microscale under transverse loading. Circular fibres showed the best averaged behaviour although lobular fibres exhibited superior performance in transverse compression mainly due to the higher tensile thermal residual stresses generated during cooling at the fibre/matrix interface.  相似文献   

12.
The electrical properties of sheets of short carbon fibres in resin, glass-fibre and wood-pulp materials have been investigated. For carbon fibre in wood-pulp, a conductor-to-insulator transition was observed at 3 wt % (0.6 vol %) carbon fibre above which conductivity varied linearly with weight fraction. This result is interpreted in terms of a percolation threshold in a system of high aspect ratio. The data agree well with previous measurements on carbon-fibre in polymer composites, and satisfactorily with two-dimensional Monte Carlo calculations. At high concentrations of carbon fibre in all materials, the in-plane resistivity was found to be strongly time-dependent, the fractional change being proportional to Int. A theoretical model is presented which assumes a continuous increase in the number of interconnecting pathways as fibres physically move together under electrostatic attractive forces. Thermal activation over a continous spectrum of energy barriers leads to logarithmic time dependence as observed experimentally. Studies of the effect of external compression support the model for the time dependence. Shell (UK) Ltd Research Fellow in Materials Science.  相似文献   

13.
研究了石墨填充丙烯腈-丁二烯-苯乙烯共聚物(ABS)复合材料的直流(DC)和交流(AC)导电特性和线性粘弹行为。电性能测试结果表明,石墨体积分数为13.21%~16.36%时,ABS/石墨复合材料的DC电阻率突降6个数量级,说明发生电学逾渗;同时,AC电阻率在低频区不随频率而变化,且AC阻抗复平面图中阻抗实部与阻抗虚部呈现半圆弧,进一步证明导电网络的形成。流变性能测试结果表明石墨体积分数为10.24%~13.21%时复合体系的储能模量和复数黏度出现跳跃,损耗因子(tanδ)的峰值减小且逐渐向高频移动,说明复合体系从"类液态"转变为"类固态",发生流变逾渗现象。流变逾渗阈值小于导电逾渗阈值是因为传递电子时石墨之间的距离比阻碍聚合物分子链运动时石墨之间的距离小。  相似文献   

14.
Various analytical models of the effective thermal expansion coefficients of unidirectional fibre-reinforced composite materials predict for certain fibre-matrix combinations an increase in the transverse coefficient of thermal expansion over that of its constituents at low fibre volume content. This effect is especially noticeable if the composite is fabricated with fibres of high modulus and low thermal expansion coefficient in matrices of low modulus and high thermal expansion coefficient. An experimental investigation was therefore conducted to study this behaviour in Textron fibre (SCS-6)-reinforced Hercules 3501 -6 epoxy matrix. Numerical calculations for this material system have shown that increases of the order of 20% over the matrix expansion coefficient is possible for fibre volume fraction in the range 3%–4%. Experimental measurements of the effective thermal expansion coefficients are seen to be in favourable agreement with the theoretical predictions. A parametric study is also undertaken to examine the influence of constituent properties on the effective composite behaviour. It is shown that the axial restraint of the fibre is responsible for a peak in the behaviour of the transverse expansion coefficient.  相似文献   

15.
Epoxy nanocomposites including multi-wall carbon nanotubes (MWCNT) and carbon black (CB) were produced and investigated by means of electrical conductivity measurements and microscopical analysis. Varying the weight fraction of the nanoparticles, electrical percolation behaviour was studied. Due to synergistic effects in network formation and in charge transport the inclusion of both MWCNT and CB in the epoxy matrix leads to an identical electrical behaviour of this ternary nanocomposite system compared to the binary MWCNT-epoxy system. For both types of nanocomposites an electrical percolation threshold of around 0.025 wt% and 0.03 wt% was observed. Conversely, the binary CB nanocomposites exhibit a three-times higher percolation threshold of about 0.085 wt%. The difference between the binary MWCNT-epoxy and the ternary CB/MWCNT-epoxy in electrical conductivity at high filler concentrations (e.g. 0.5 wt%) turns out to be less than expected. Thus, a considerable amount of MWCNTs can be replaced by CB without changing the electrical properties.  相似文献   

16.
通过溶剂化过程制备碳黑-二氧化硅-环氧树脂聚合物基复合材料,并研究复合材料的导电渗透特性。当碳黑的体积分数低于15.5%时,复合材料的导电性可以用经典的渗透理论来描述,并发现渗透阈值约为14.7%,这与理论预测值相接近。当碳黑的体积分数高于15.5%时,材料的电导率与理论预测值偏离较大。这可能是因为:此时材料中的二氧化硅的用量较少,其对碳黑颗粒的空间体积排除效应较差;由于氢键和范德华力作用,纳米级的碳黑颗粒容易形成聚集态,这与渗透理论中导电颗粒必须是单个分布的这一前提假设相违背。扫描电镜分析及模拟计算结果支持该结论。  相似文献   

17.
18.
炭黑填充型导电复合材料的聚集体结构模型   总被引:2,自引:0,他引:2  
分析了炭黑填充聚合物导电复合材料的非线性导电行为和机理,基于有效介质理论及以炭黑聚集体的等效球形单元为基本单元,建立了描述其非线性导电行为的聚集体结构模型。进而推导出复合体系导电率与炭黑体积分数之间的关系式及其逾渗阈值的计算式,克服了有效介质理论只能得到逾渗阈值为1/3而不能解释低于1/3的逾渗阈值的不足。应用这些表达式预测了导电复合体系的导电率和逾渗阈值,并与实验结果进行了比较,结果表明:预测值与实验结果有较好的一致性。  相似文献   

19.
The effect of uniaxial and multiaxial mechanical strain on the electrical conductivity of particle filled polymer composites is investigated in the framework of concentration-driven percolation. For composites consisting of low aspect ratio, rigid conductive particles in a compliant polymer matrix, a simple argument leads to the conclusion that the effective volume fraction of conductive particles (the ratio of total particle volume to the total volume of the deformed composite) plays a dominant role, with conductivity remaining isotropic despite the directional bias of the strain state. As such, conductivity is expected to exhibit classical power, law-dependence on concentration, which in this case takes the form of a strain-dependent effective volume fraction. Consideration of deformation effects on particle agglomerates suggest, however, that particle-to-particle network connections are likely to be affected most significantly along directions experiencing the most severe strains, introducing a directional bias in network connectivity at a higher length scale. To assess the importance of this possible directional bias, random resistor network models are used to study the conductivity of uniaxially strained composites. For conservative assumptions on the severity of the bias in bond probabilities, network conductivities exhibit approximately isotropic, concentration-driven behavior for moderate strains, supporting the predictive utility of the simple percolation conduction-effective volume fraction approach. Further corroboration is provided by experiments in the literature on silicone-graphite composites subjected to uniaxial compressive strain, where good agreement is obtained through moderate strains for the theoretically correct value of the conduction exponent in concentration-driven percolation.  相似文献   

20.
Carbon fiber reinforced plastic (CFRP) has electrical conductivity in both the parallel and transverse directions of the fiber. Because an electrical network may be changed with the applied strain, the electrical conductivity of the CFRP will also be changed for the piezoresistivity. Strain monitoring of CFRP can therefore be conducted, not by using an additional sensor, but by measuring the change in electrical resistance. There have been many studies on the gauge factors of unidirectional CFRPs, although significant mutual differences have been determined in the results reported. It is thought that the differences may be caused by the strong electrical anisotropy and inhomogeneity of the unidirectional CFRP. In this study, a new concept was introduced to precisely measure the gauge factors of a unidirectional CFRP. A finite element analysis was utilized to take into consideration a non-uniform electrical potential field in a unidirectional CFRP. The gauge factors were obtained as a result of minimizing the error sum of the squares of the electrical potentials between the experimental and analytical results. The gauge factor in the fiber direction was affected by this factor in the thickness direction depending on the specimen configuration. The results of the finite element analysis showed the possibility of a unidirectional CFRP showing both positive and negative gauge factors in the fiber direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号