首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The propagation of circularly crested waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with layers of inviscid liquid or half space of inviscid liquid on both sides is investigated in the context of conventional coupled thermoelasticity, Lord-Shulman and Green-Lindsay theories of thermoelasticity. Secular equations for circular homogeneous transversely isotropic plate in closed form and isolated mathematical conditions for symmetric and antisymmetric wave modes in completely separate terms are derived. The results for isotropic materials and uncoupled theories of thermoelasticity have been obtained as particular cases. The special cases such as short wavelength waves, thin plate waves and leaky Lamb waves of the secular equation are also deduced and discussed. The amplitudes of displacement components and temperature change have also been computed and studied. Finally, the numerical solution is carried out for transversely isotropic circular plate of cobalt material bordered with water. The dispersion curves for symmetric and antisymmetric wave modes, attenuation coefficient and amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The analytical and numerical results are found to be in close agreement.  相似文献   

2.
The conditions for hybridization of the zero-order and high-order acoustic waves propagating in a piezoelectric crystal plate have been studied. The dependence of the phase velocity of the hybrid waves on the parameter hf (h is the plate thickness and f is the wave frequency) is established for the potassium niobate and lithium niobate plates possessing various crystallographic orientations and conductivities. It is found that hybridization takes place when the conductivity of a thin surface layer exceeds a certain critical value, which can vary within broad limits depending on the plate material and orientation. The degree of dispersive repulsion of the coupled modes grows with increasing electromechanical coupling coefficient.  相似文献   

3.
The phenomenon of hybridization of the backward acoustic waves propagating in a piezoelectric crystal plate has been studied. In an electrically free plate (in particular, of potassium niobate) with a crystal orientation for which a sagittal plane is the symmetry plane, the dispersion curves of backward acoustic waves exhibit points of intersection and hybridization is absent. However, for a small change in the direction of wave propagation, the dispersion curves exhibit “repulsion” and the waves become coupled. The degree of hybridization is quantitatively evaluated in terms of the hybridization coefficient, which is defined as the ratio of the total mutual energy density and the total energy density of the interacting waves. It is demonstrated that the extent of repulsion of the dispersion curves for the interacting waves is determined by the dependence of the hybridization coefficient on the product of the plate thickness and the wave frequency.  相似文献   

4.
Theoretical analysis and numerical results describing the propagation of SH (shear-horizontal) surface waves on piezoelectric ceramics with a depolarized surface layer are described. SH surface waves propagating in piezoelectric ceramics with a depolarized surface layer are shown to be a mixture of the Bleustein-Gulyaev surface wave, electrical potential, and the Love surface-wave mechanical displacement. Depolarization of the surface layer in piezoelectric ceramics produces strong dispersion and a multimode structure of the SH surface wave. The penetration depth of the SH surface waves propagating on an electrically free surface of a piezoelectric ceramic with a depolarized surface layer can be significantly smaller than that of the Bleustein-Gulyaev surface waves propagating on a free piezoelectric half-space. It is concluded that piezoelectric ceramics with a depolarized surface layer can be used in hybrid piezoelectric semiconductor convolvers of reduced size.  相似文献   

5.
A new existence condition for shear-horizontal (SH) surface waves in a layered structure of piezoelectric ceramics is give. The discussed SH surface wave is not a stiffened Love wave, but a new type surface wave.  相似文献   

6.
The curves of slowness and power flow angle (PFA) of quasi-antisymmetric (A0) and quasi-symmetric (S0) Lamb waves as well as quasi-shear-horizontal (SH0) acoustic waves in thin plates of lithium niobate and potassium niobate of X-,Y-, and Z-cuts for various propagation directions and the influence of electrical shorting of one plate surface on these curves and PFA have been theoretically investigated. It has been found that the group velocity of such waves does not coincide with the phase velocity for the most directions of propagation. It has been also shown that S0 and SH0 wave are characterized by record high values of PFA and its change due to electrical shorting of the plate surface in comparison with surface and bulk acoustic waves in the same material. The most interesting results have been verified by experiment. As a whole, the results obtained may be useful for development of various devices for signal processing, for example, electrically controlled acoustic switchers.  相似文献   

7.
The characteristics of backward acoustic waves in piezoelectric plates under different electrical boundary conditions were investigated. It has been shown that electrical shorting of the plate leads to increasing and decreasing the phase velocity for backward and forward branches, respectively. The peculiarities of the hybridization effect of backward waves were studied.  相似文献   

8.
Exact analysis of the propagation of acoustic waves in multilayered piezoelectric plates is performed using the transfer matrix method. A general technique for analyzing layered piezoelectric resonators under thickness and lateral field excitation is presented and is applied to the study of zinc oxide on silicon thin film resonators. Both one and two-dimensional analysis with general material anisotropy is performed, and a simplified method for incorporating thin conducting electrodes on the plate's free surfaces is presented. The general methodology described is summarized into efficient algorithms to aid in the implementation of the procedures and some computational aspects are discussed. Results are presented for cutoff behavior as well as general dispersion characteristics for two and three layered plates  相似文献   

9.
The propagation of shear-horizontal waves in a piezoelectric film of aluminum nitride on a silicon substrate is studied. Three different electrode configurations are considered for thin film acoustic wave resonator application. A theoretical analysis is performed. The equations of linear piezoelectricity and anisotropic elasticity are used for the film and the substrate, respectively. Real and imaginary dispersion curves as well as electromechanical mode shapes are obtained. The effects of electrode configuration on the distribution of the electromechanical fields and the dispersion curves of long thickness-twist waves as well as energy trapping are examined.  相似文献   

10.
The characteristics of QSH (quasi shear horizontal) acoustic waves propagating in thin plates of Y-cut, X-propagation lithium niobate are investigated theoretically and experimentally. The fractional velocity change (Deltanu/nu) produced by electrical shorting of the surface is calculated as a function of the normalized plate thickness h/lambda (h=plate thickness, lambda=acoustic wavelength). It was found that values of Deltanu/nu as high as 0.18 could be obtained. Experimental measurements show good agreement with theory. The properties of QSH waves propagating in the presence of a perfectly conducting electrode separated from the piezoelectric plate by a small air gap have been studied theoretically and experimentally. It was found that by varying the height of the gap, the phase shift through a 3.2-MHz QSH wave delay line can be varied by more than 230 degrees . We have also theoretically investigated the influence of a thin layer of arbitrary conductivity on the velocity and attenuation of the QSH wave. Calculations show that the variations in these parameters can be as high as 18% and 5 dB per wavelength for a change in layer surface conductance from 10(-7) to 10(-5) S. Results obtained in this paper confirm the attractive properties of QSH waves for a variety of sensing and signal processing applications.  相似文献   

11.
The effect of a dielectric weight load on the zero-order acoustic modes in a thin piezoelectric plate of lithium tantalate (LiTaO3) was theoretically studied, and the change in this sensitivity in the presence of a liquid was estimated. The gravimetric sensitivity has a complicated frequency spectrum and also depends on the plate thickness and on the load material. The presence of a liquid can significantly increase the sensitivity of zero-order acoustic modes in a piezoelectric plate with respect to a dielectric weight load.  相似文献   

12.
As is well-known, the development of high-effective and thermostable acoustic devices assumes using the acoustic waves with high coefficient of electromechanical coupling (K2) and low temperature coefficient of delay (TCD). At present, it also is well-known that fundamental shear horizontal (SH0) acoustic waves in thin piezoelectric plates possess by significantly more electromechanical coupling compared to surface acoustic waves (SAW) in the same material. However, although the value of TCD of SH0 waves is insignificantly less than for SAW, this is not enough for development of thermostable devices. This paper suggests a new way of decreasing TCD of SH0 waves in piezoelectric plates at a high level of electromechanical coupling. This way assumes to use the structure containing the piezoelectric plate and liquid with the special dependence of permittivity on temperature. Theoretical and experimental investigation showed that, for SH0 wave in YX LiNbO3 plate at hf = 700 m/s (h = plate thickness, f = wave frequency) the presence of butyl acetate can decrease the value of TCD by six times at K2 = 30%. In a whole the obtained results open the wide prospect of using SH0 wave in thin piezoelectric plate for development of high effective and thermo-stable acoustic devices.  相似文献   

13.
Surface loading of a piezoelectric crystal supporting acoustic plate modes (APMs) by a dilute conductive liquid is analyzed using a perturbation theory. The formulation of the problem is such that only the electrical loading is relevant, and the mass loading and viscous entrainment caused by the solute are ignored. The perturbation in the propagation characteristics is then obtained relative to the solvent and is described in terms of the coupling coefficient, the capacitive loading, and the conductivity of the liquid. The results are compared to measurements made on Z-cut X-propagating LiNbO(3 ) APM device loaded with various conductive liquids of different concentrations. While an interpretation of the results can be given on the use of the APM device as a detector of the liquid properties, it is shown that a conductive liquid loading of the piezoelectric surface can be used as a means of assessing the electromechanical coupling coefficient of APMs.  相似文献   

14.
Shear-horizontal acoustic wave storage in Ni-Co magnetostrictive polycrystalline ferrite was studied. The results show that the observed storage effect is acceptably efficient for applications. The use of shear-horizontal waves also decreases the level of the required electrical signals  相似文献   

15.
Analysis for the propagation of thermoelastic waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with layers of inviscid liquid or half space of inviscid liquid on both sides, is investigated in the context of coupled theory of thermoelasticity. Secular equations for homogeneous transversely isotropic plate in closed form and isolated mathematical conditions for symmetric and anti-symmetric wave modes in completely separate terms are derived. The results for isotropic materials and uncoupled theories of thermoelasticity have been obtained as particular cases. It is shown that the purely transverse motion (SH mode), which is not affected by thermal variations, gets decoupled from rest of the motion of wave propagation and occurs along an in-plane axis of symmetry. The special cases, such as short wavelength waves and thin plate waves of the secular equations are also discussed. The secular equations for leaky Lamb waves are also obtained and deduced. The amplitudes of displacement components and temperature change have also been computed and studied. Finally, the numerical solution is carried out for transversely isotropic plate of zinc material bordered with water. The dispersion curves for symmetric and anti-symmetric wave modes, attenuation coefficient and amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The theory and numerical computations are found to be in close agreement.  相似文献   

16.
In this paper, we present a study on the existence of Bleustein-Gulyaev-Shimizu piezoelectric surface acoustic waves in a two-dimensional piezoelectric phononic crystal (zinc oxide, ZnO, and cadmium-sulfide, CdS) using the plane wave expansion method. In the configuration of ZnO (100)/CdS(100) phononic crystal, the calculated results show that this type of surface waves has higher acoustic wave velocities, high electromechanical coupling coefficients, and larger band gap width than those of the Rayleigh surface waves and pseudosurface waves. In addition, we find that the folded modes of the Bleustein-Gulyaev-Shimizu surface waves have higher coupling coefficients.  相似文献   

17.
Matrix algorithms for modeling acoustic waves in piezoelectric multilayers   总被引:1,自引:0,他引:1  
Matrix algorithms for modeling acoustic waves in piezoelectric multilayers are presented. All the algorithms considered are capable of resolving the numerical instability of transfer matrix at high frequency-thickness product. The formulation of basic matrices for the algorithm building blocks, and the development of recursive algorithms for the stack matrices, are systematically presented for both the conventional scattering and impedance matrices as well as the more recent hybrid matrix. Many variants of the algorithms are discussed, along with their respective usefulness and deficiency. Comparisons are made in their computational efficiency and numerical stability. For unconditional stability throughout large and small thicknesses, both scattering and hybrid matrix algorithms are applicable. For most efficiency, the algorithms that synergize both scattering and hybrid or impedance submatrices are superior, using surface matrix approach. Other aspects of algorithms such as formula conciseness, physical insight, versatility in incorporating boundary conditions, etc., are also noted.  相似文献   

18.
The paper studies the bulk wave reflection from internal interfaces in piezoelectric media. The interfaces of two types have been considered. Infinitesimally thin metallic layer inserted into homogeneous piezoelectric crystal of arbitrary symmetry. Rigidly bonded crystals whose piezoelectric coefficients differ by sign but the other material constants are identical. Analytic expressions for the coefficients of mode conversion have been derived. An analysis has been carried out of specific singularities arising when the angle of incidence is such that the resonance excitation of leaky interface acoustic waves occurs. The conditions for the resonance total reflection have been established. The computations performed for lithium niobate (LiNbO3) illustrate general conclusions.  相似文献   

19.
严萍  朱哲民  杜功焕 《声学技术》2000,19(3):114-115,120
1 引 言   L amb波是固体薄板中传播的一种弹性波 ,最初有关 Lamb波的微传感的理论研究大都只局限在各向同性板材中 ,由于在各向异性压电板上可以高效激发 L amb波 ,灵敏度高 ,体积小 ,性价比高等特点 ,因而各向异性材料有更大的实用性 ,实验上已有各向异性压电板传感器的尝试 [1] ,特别是在生物传感领域 ,由于能检测到病毒等 ,因而特别具有吸引力。在理论上 S.G.Joshi[2 ] ,Chimenti[3 ] ,Vinay Day-al[4 ] 都对各向异性板中的 L amb波进行了理论推导和数值计算 ,为了对各向异性材料微传感性的机理有进一步深入了解 ,本文研究若干…  相似文献   

20.
In the context of noise and vibration reduction by passive piezoelectric devices, this work presents the theoretical formulation and the finite element (FE) implementation of vibroacoustic problems with piezoelectric composite structures connected to electric shunt circuits. The originalities of this work concern (i) the formulation of the electro-mechanical-acoustic coupled system, (ii) the implementation of an accurate and inexpensive laminated composite plate FE with embedded piezoelectric layers connected to resonant shunt circuits, and (iii) the development of an efficient fluid-structure interface element. Various results are presented in order to validate and illustrate the performance of the proposed fully coupled numerical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号