首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
采用ANSYS建立铜钢复合冷却壁的传热和热应力模型,分析稳定挂渣及渣皮脱落后的温度和热应力分布.结果表明,炉气温度是影响壁体温度、渣皮厚度、热负荷和应力状态的主要因素.在稳定挂渣时,铜壁最高温度为124℃,热负荷81.1 kW/m2,变形量比铜质冷却壁有所减少.在渣皮脱落后,铜壁温度和应力快速上升,5 min后趋向稳定.在冷却壁裸露的情况下,铜壁和钢板之间仍然保持牢固结合.  相似文献   

2.
高炉铸铁冷却壁极限热负荷的传热分析   总被引:2,自引:0,他引:2  
通过建立高炉铸铁冷却壁的三维传热模型,应用渣皮熔化迭代方法分析冷却壁温度场,确定不同条件下冷却壁的极限热负荷,讨论了高炉冷却壁的结构和冷却工艺对极限热负荷的影响.结果表明,冷却水速度(2~4m/s)对极限热负荷影响较小,水管与壁体间的气隙降低了铸铁冷却壁冷却能力;冷却水管直径由φ48 mm增加到φ70 mm,可以使极限热负荷提高45%.  相似文献   

3.
鞍钢铜冷却壁高炉的热负荷管理   总被引:1,自引:0,他引:1  
对鞍钢2座相同铜冷却壁结构高炉的热负荷管理经验进行了总结.新2号高炉与新3号高炉的炉体结构、操作制度完全相同,但新3号高炉的热负荷、渣皮稳定性远不如新2号高炉.为加强对铜冷却壁渣皮稳定性管理,鞍钢开发铜冷却壁炉型管理模型,重点监视渣皮厚度与脱落情况变化,控制高炉热负荷在合适范围内,保证了高炉稳定顺行.  相似文献   

4.
不同工况下铸铁冷却壁热负荷分析   总被引:1,自引:0,他引:1  
采用有限元软件ANSYS建立高炉冷却壁稳态传热模型,利用ANSYS单元生死技术模拟冷却壁表面渣皮熔化行为,以计算铸铁冷却壁在渣皮稳定、渣皮脱落、冷却壁烧损和冷却壁烧毁4种工况下的温度分布和热负荷。分析结果表明,冷却壁热负荷随着炉气温度的升高而增加,提高冷却水速度和壁体烧损变薄对热负荷的影响较小。渣皮脱落和冷却壁完全消失造成热负荷急剧增加。  相似文献   

5.
6.
高炉铜冷却壁传热分析   总被引:31,自引:4,他引:27  
利用自行开发的冷却器计算机软件,计算了铜冷却壁温度场。计算结果表明:铜冷却壁能够有效地降低炉内一侧冷却壁热面温度,使其表面能够迅速凝固一层渣铁壳,从而减小炉墙热量损失和延长冷却器寿命,最终延长高炉寿命。  相似文献   

7.
提高高炉炉腰及炉身下部冷却壁抗热变形能力是维持高炉长寿的关键.采用热态实验和数值模拟手段研究高炉炉腰及炉身下部区域铜钢复合冷却壁的传热及热变形行为,并与铜冷却壁进行对比分析.铜钢复合冷却壁热面无渣铁壳覆盖,煤气温度1200℃条件下,铜钢复合冷却壁最高温度为180℃,传热性能与铜冷却壁接近.铜钢界面最大等效应力约为114.45 MPa,低于铜钢复合板的抗拉强度.铜钢复合冷却壁发生弯曲变形,中心z向位移为0.66 mm,较铜冷却壁低约25.8%;顶底端沿z向位移为0.13 mm,较铜冷却壁低约50%;曲率为0.93×10-4 mm-1,较铜冷却壁低约51.81%.铜钢复合冷却壁抗变形能力优于铜冷却壁,可以避免铜冷却壁热变形过大导致的螺栓及冷却水管断裂破损问题.  相似文献   

8.
建立了高炉铜冷却壁非稳态传热分析模型,利用ANSYS单元生死技术模拟了冷却壁表面的渣皮再生行为,分析了渣皮脱落后的生长规律及壁体温度和热负荷的变化过程。结果表明,渣皮生长遵循幂函数规律。经过计算,渣皮脱落0.9 min时铜壁测量点温度达到最高值59℃,经过23.5 min趋于稳定。铜冷却壁承受的最高热负荷为107.8 kW/m2,热面最高温度达到123℃。  相似文献   

9.
首钢2号高炉铜冷却壁使用的体会   总被引:2,自引:0,他引:2  
结合首钢2号高炉铜冷却壁使用的经验,重点阐述了铜冷却壁作为一种长寿、高效的冷却设备,铜冷却壁需要其热面的渣皮来实现对自身的保护。而铜冷却壁热面的渣皮对炉内煤气流分布的变化十分敏感,因此,稳定煤气流分布,实现渣皮的稳定,是铜冷却壁高炉稳定、顺行的关键。  相似文献   

10.
基于传热学和有限元分析基本原理,通过Solid Works Simulation有限元分析软件,对模型进行了稳态传热分析,并提供了不同物性参数及工况条件下进行的相应传热计算,讨论其对铸铁冷却壁最高温度和最高热应力产生的影响,得出各因素影响铸铁冷却壁最高温度和最高热应力的变化规律。为优化铸铁冷却壁结构设计,提高铸铁冷却壁使用性能提供了参考和依据。  相似文献   

11.
高炉冷却壁的稳态传热计算   总被引:2,自引:0,他引:2  
通过采用工种技术实丛建模,计算并分析高炉冷却壁的稳态传过程以及不同设计和工艺参数对它的影响。结果表明,影响冷却壁最高温度的因素依次为渣壳、冷却水速度、传衬厚度等。安装微型冷却器后,冷却壁最高温度可降低35%,铜冷却壁可使冷却壁却壁体最高温度降低77%。  相似文献   

12.
基于ANSYS的高炉铸钢冷却壁传热分析   总被引:5,自引:0,他引:5  
钱中  程惠尔 《钢铁钒钛》2005,26(1):55-59
运用大型有限元通用软件ANSYS,对高炉铸钢冷却壁稳态工况进行传热学分析。同时根据计算结果,分析了冷却壁在稳定工作状态下的温度、热流以及温度梯度的分布情况。通过分析可以找出冷却壁工作中需要注意的地方,为今后冷却壁的维护和设计提供参考。还讨论了冷却水管水垢对高炉铸钢冷却壁温度场的影响。结果表明,水垢每增加1mm厚,会使冷却壁热面温度升高约60℃。  相似文献   

13.
基于热态实验的冷却壁传热分析   总被引:5,自引:0,他引:5  
建立了高炉铸钢冷却壁传热数学模型,并通过热态实验验证数学模型,进而根据所建模型对冷却壁的稳态工况进行仿真计算.同时根据计算结果讨论了冷却水管水垢厚度、气隙层厚度对高炉铸钢冷却壁温度场的影响.结果表明:这两个因素对冷却壁的性能都具有很大的影响,在高炉操作和冷却壁的设计制造中必须重视.  相似文献   

14.
建立高炉铜冷却壁三维传热模型,利用有限元软件ANSYS进行稳态传热分析,研究了钒钛磁铁矿冶炼时挂渣特点。分析结果表明,由于含钒钛高炉渣铁珠含量高,使渣皮显著增厚导致渣皮稳定性下降。将铜冷却壁热电偶测量点温度控制在60~80℃,可以提高渣皮稳定性,保证铜冷却壁安全工作。在现有工艺条件下,把水速从2.3 m/s降低到1.5 m/s对挂渣影响很小。  相似文献   

15.
 冷却壁安全工作是保证高炉长寿的基础。通过设计并建造冷却壁热态实验炉,研究了高炉铸铁冷却壁热面无渣皮和有渣皮时的非稳态传热过程,考察了不同炉气温度条件下冷却壁热电偶温度的变化规律。回归得到了炉气在升温阶段、稳定阶段、降温阶段时冷却壁热电偶温度随时间的变化关系式。计算得出了冷却壁热面在有无渣皮条件下的平均热流强度,回归得出了炉气平均对流换热系数随炉温的变化关系。结果表明,冷却壁热面在有渣皮时热电偶温度的变化速率显著低于无渣皮时的变化速率,冷却壁破损的主要原因是冷却壁温度的反复变化和渣皮的频繁脱落而产生的热应力。  相似文献   

16.
沈宗斌 《鞍钢技术》1997,(2):9-11,24
高炉冷却壁被用于大中型高炉,以此来保护高炉外壳及炉衬,冷却壁的耐热强度对高炉的使用寿命起着很重要的作用,甚至可以说冷却壁的寿命基本上决定了高炉的使用寿命。通过计算第三、四代冷却壁的热应力比较,建议采用由第三代冷却壁改进的分段镶砖一体化并带有薄助的第四代冷却壁。  相似文献   

17.
高炉炉墙热负荷的传热学分析和研究   总被引:10,自引:1,他引:9  
应用传热学理论计算了冷却器设计参数,炉衬厚度,渣铁凝固层厚度以及对流换热系数对炉墙热负荷的影响。结果表明:高炉炉墙的热负荷与冷却水管直径,冷却水管间距和镶砖的导热系数成正比,与冷却水管距冷却壁热面的距离,镶砖厚度和面积成反林;改变冷却壁的设计参数虽然使炉墙的热负荷增大,但炉墙的热面工作温度却反而降低。这有利于保护炉衬。  相似文献   

18.
控制合适的高炉冷却壁热负荷对高炉操作和长寿起着至关重要的作用.介绍宝钢3BF控制冷却壁热负荷所采取的多项措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号