首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
可生物降解聚合物微球的制备及载药应用   总被引:1,自引:0,他引:1  
顾准  贾红圣  程炜 《化工新型材料》2011,39(10):32-34,146
综述了近年来合成生物降解聚合物微球的种类、制备方法及作为药物载体的应用.结果表明,这类聚合物微球具有良好的安全性、生物相容性和生物降解性,在药物缓释、控释和疾病的治疗中具有非常重要的作用和应用前景.  相似文献   

2.
The ability to create aqueous suspended stable nanoparticles of the hydrophobic homopolymer poly(?‐caprolactone) end‐functionalized with coumarin moieties (CPCL) is demonstrated. Nanoparticles of CPCL are prepared in a continuous manner using nanoprecipitation. The resulting nanoparticles are spherical in morphology, about 40 nm in diameter, and possess a narrow size distribution and excellent stability over 4 months by repulsive surface charge. Nanoparticle size can be easily controlled by manipulating the concentration of CPCL in the solution. The interparticle assembly between the nanoparticles can be reversibly adjusted with photoirradiation due to photoinduced [2 + 2] cyclodimerization and cleavage between the coumarin molecules. In addition, the CPCL nanoparticles show significant cellular uptake without cytotoxicity, and the intrinsic fluorescence of the coumarin functional group permits the direct detection of cellular internalization.  相似文献   

3.
Ding H  Yong KT  Roy I  Hu R  Wu F  Zhao L  Law WC  Zhao W  Ji W  Liu L  Bergey EJ  Prasad PN 《Nanotechnology》2011,22(16):165101
In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l( - 1). Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α(v)β(3) integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.  相似文献   

4.
Bovine serum albumin (BSA) nanoparticles containing arsenic trioxide (As(2)O(3)) were prepared by a pH-coacervation method. To investigate the properties of the As(2)O(3)-loaded BSA nanoparticles, a study on drug-to-polymer ratio was done to determine the drug loading (DL), and a H-600 transmission electron microscope (TEM) was used to examine the particle sizes. The results showed that the DL was 27.8% and the average particle size was about 734 nm. The drug release in vitro test was done, which revealed that the drug release was found to provide a slow release after an initial burst release and the cumulative percentage release reached close to 95%. In vitro cytotoxicity test was carried out using APL NB4 cell lines (acute promyelocytic leukemia), and the anticancer efficacy in vivo against mouse H22 hepatoma cells was evaluated on kungming mice. The results indicated that the anticancer efficacy of the As(2)O(3)-loaded BSA nanoparticles was very obvious.  相似文献   

5.
This study examined the optical characteristics of bicalutamide-loaded magnetic/ethylene glycol composite nanoparticles (BMP), as well as their anti-cancer activity against cancer cells. The gamma-Fe2O3 magnetic nanoparticles (MNPs), approximately 20 nm in diameter, were prepared via a chemical co-precipitation method and coated with two surfactants to yield a water-based product. The characteristics of the particles were determined via X-ray diffraction (XRD), field emission scanning electron microscopy, and Raman spectrophotometry. The Raman spectra of the BMP showed peaks at 222, 283, 395, 520, 669 and 1316 cm(-1), with broadened band in comparison to the Raman spectra of the magnetic nanoparticles. The BMP absorbance evidenced a rapid increase, with a broad peak at 409 nm, thus reflecting a good loading of the bicalutamide onto the magnetic nanoparticles. The results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the MNPs were non-toxic against human brain cancer cells (SH-SY5Y), human cervical cancer cells (Hela), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2) and human prostate cancers (Du 145, PC3) tested herein. In particular, BMPs were cytotoxic at 56% against DU145 cells, at 74.37% in SH-SY5Y cells, and at 58% in Hela cells. Our results demonstrated the biological applicability of BMP nanoparticles as anticancer agents and as agents for enhanced drug delivery against human prostate cancer cells. Our results indicated that the MNPs were biostable and that the BMP functioned effectively as drug delivery vehicles.  相似文献   

6.
The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) copolymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibits an IC(50) = 0.77 ± 0.11 μM comparable to that of free cisplatin (IC(50) = 0.44 ± 0.09 μM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and release cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibit significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo, with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy.  相似文献   

7.
Due to multidrug resistance of cancer tissues and immune-suppression of cancerous patients during chemotherapy in one hand and the use of tetrazole derivatives in medicine because of its anticancer, antifungal, and antiviral properties, on the other, we were encouraged to design novel smart antibacterial nanocomposites-based polymer of tetrazole as dual anticancer drug delivery systems. The structures of nanocomposites characterized by FTIR, 1H NMR, FESEM-EDX, and TGA analyzes and antibacterial activity of smart carriers were evaluated by determination of minimum inhibitory concentration (MIC) values against some bacteria and fungi. Then, the pH-responsive manner of both nanocomposites was proved by checking their release profiles at pH of the physiological environment (pH 7.4) and pH of tumor tissues (mildly acidic). Finally, the potential antitumoral activity of these nanocomposite systems against MCF7 cell lines was evaluated by MTT assay and cell cycle studies. The results demonstrated that the novel developed nanocomposites not only meet our expectations about simultaneous release of two anticancer drugs according to the predicted profile but also showed antibacterial and anticancer properties in vitro experimental. Moreover, it was proved that these carriers have tremendous potential in multifunctional drug delivery in cancer therapy.  相似文献   

8.
RNA interference (RNAi) is an emerging technology in which the introduction of double-stranded RNA (dsRNA) into a diverse range of organisms and cell types causes degradation of the complementary mRNA. It offers a broad spectrum of applications in both biological and medical research. Small interference RNA (siRNA) was recently explored for its therapeutical potential. However, the drug delivery of siRNA oligos is very novel and is in great need of future research. To this end, a biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle drug carrier system was prepared to load siRNA oligos with desired physicochemical properties. The nanoparticles were characterized by scanning electron microscopy and laser diffraction particle sizer. The delivery of siRNA into the targeted 293T cells was observed using fluorescent-labeled double-stranded Cy3-oligos. The model siRNA oligos, si-GFP-RNA, were also successfully loaded into PLGA nanoparticles and delivered in 293T cells. The gene silencing effect and the inhibition of GFP expression were investigated using fluorescent microscopy. Both positive and negative controls were used to compare with the new siRNA nanoparticle delivery system. It was found that nanoparticles offered both effective delivery of siRNA and prominent GFP gene silencing effect. Compared to conventional carrier systems, the new biodegradable polymeric nanoparticle system may also offer improved formulation stability, which is practically beneficial and may be used in the future clinical studies of siRNA therapeutics.  相似文献   

9.
Objective: The aim of this study was to evaluate a formulation made of poly(lactide-co-glycolide) (PLGA) nanoparticles containing azelaic acid for potential acne treatment.

Methods: Azelaic acid-loaded PLGA nanoparticles were prepared by spontaneous emulsification processes using poloxamer 188 as stabilizer. Several manufacturing parameters such as stirring rate, concentration of stabilizer and different recovery methods were investigated. Nanoparticles were evaluated in terms of size, zeta potential, encapsulation efficiency, release kinetics and permeation kinetics in vitro. Furthermore, in vitro toxicological studies were performed in Saccharomyces cerevisiae model.

Results: The results showed that by adjusting some formulation conditions it was possible to obtain nanoparticles with high loading and a controlled drug release. Freeze-dried recovery altered the nanoparticles structure by enhancing porous structures and mannitol was required to control the mean particle size. The centrifugation recovery was found to be the best approach to nanoparticles recovery. Similar toxicity profiles were observed for both drug-free and azelaic acid-loaded nanoparticles, with concentration-dependent decreases in cell viability.

Conclusion: These results indicate a potential formulation for controlled release delivery of azelaic acid to the follicular unit.  相似文献   


10.
Combination delivery systems composed of injectable hydrogels and drug-incorporated nanoparticles are urgently in regional cancer chemotherapy to facilitate efficient delivery of chemotherapeutic agents, enhance antitumor efficiency, and decrease side effects. Here, we developed a novel thermosensitive amphiphilic triblock copolymer consisting of methoxy poly(ethylene glycol), poly(octadecanedioic anhydride), and d,l-lactic acid oligomer (PEOALA), built a combination system of thermosensitive injectable hydrogel PTX/PEOALAGel based on paclitaxel (PTX)-loaded PEOALA nanoparticles (NPs). PTX/PEOALAGel could be stored as freeze-dried powders of paclitaxel-loaded PEOALA NPs, which could be easily redispersed into the water at ambient temperature, and form a hydrogel at the injected site in vivo. The in vitro cytotoxicity of PTX/PEOALAGel showed no obvious cytotoxicity in comparison with Taxol® against MCF-7 and HeLa cells. However, the in vivo antitumor activity showed that a single intratumoral injection of the PTX/PEOALAGel formulation was more effective than four intravenous (i.v.) injections of Taxol® at a total dosage of 20?mg/kg in inhibiting the growth of MCF-7 tumor-bearing Balb/c mice, and the inhibition could be sustained for more than 17 d. The pharmacokinetic study demonstrated that the intratumoral injection of PTX/PEOALAGel could greatly decrease the systemic exposure of PTX, as confirmed by the rather low plasma concentration, and prolonged circulation time and enhanced tumor PTX accumulation, implying fewer off-target side effects. In summary, the PTX/PEOALAGel combination local delivery system could enhance tumor inhibition effect and tumor accumulation of PTX, and lower the systemic exposure. So, the reconstituted PTX/PEOALAGel system could potentially be a useful vehicle for regional cancer chemotherapy.  相似文献   

11.
The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Polyaspartic acid and polylactic acid are the most intensively studied biodegradable polymers. In the present study, novel amphiphilic biodegradable co-polymer NPs, poly(L-aspartic acid-co-lactic acid) with 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) (poly(AA-co-LA)/DPPE) is synthesized and subsequently used to encapsulate an antitumor drug doxorubicin (DOX). The formulation parameters of the NPs are optimized to improve encapsulation efficiency. The resulting drug-loaded NPs possess better size homogeneity (polydispersity) and exhibit pH-responsive drug release profiles. Cellular viability assays indicate that the poly(AA-co-LA)/DPPE NPs did not induce cell death, whereas doxorubicin encapsulated NPs were cytotoxic to various types of tumor cells. In addition, the free NPs could not enter the cell nuclei after internalized in tumor cells. The DOX-loaded NPs exhibit efficient intracellular delivery in tumor cells with co-localization in lysosome and delay entering into the nucleus, which suggests a time- and pH-dependent drug release profile within cells. When applied to deliver chemotherapeutics to a mouse xenograft model of human lung adenocarcinoma, DOX-loaded NPs have a comparable antitumor activity with free DOX, and greatly reduce systemic toxicity and mortality. The delivery of cytotoxic drugs directly to the nucleus specifically within tumor cells is of great interest. These results demonstrate the feasibility of the application of the amphiphilic polyaspartic acid derivative, poly(AA-co-LA)/DPPE, as a nanocarrier for cell nuclear delivery of potent antitumor drugs.  相似文献   

12.
Biodegradable materials like chitosan (CH) and methoxy polyethylene glycol (mPEG) are widely being used as drug delivery carriers for various therapeutic applications. In this study, copolymer (CH-g-mPEG) of CH and carboxylic acid terminated mPEG was synthesized by carbodiimide-mediated acid amine reaction. The resultant hydrophilic copolymer was characterized by Fourier transform infrared spectroscopy and 1H NMR studies, revealing its relevant functional bands and proton peaks, respectively. Blank polymeric nanoparticles (B-PNPs) and 5-fluorouracil loaded polymeric nanoparticles (5-FU-PNPs) were formulated by ionic gelation method. Furthermore, folic acid functionalized FA-PNPs and FA-5-FU-PNPs were prepared for folate receptor-targeted drug delivery. FA-5-FU-PNPs were characterized by particle size, zeta potential, and in vitro drug release studies, resulting in 197.7?nm,?+29.9?mv, and sustained drug release of 88% in 24?h, respectively. Cytotoxicity studies were performed for FA-PNPs and FA-5-FU-PNPs in MCF-7 cell line, which exhibited a cell viability of 80 and 41%, respectively. In vitro internalization studies were carried out for 5-FU-PNPs and FA-5-FU-PNPs which demonstrated increased cellular uptake of FA-5-FU-PNPs by receptor-mediated transport. Significant (p?相似文献   

13.
The purpose of this study was to investigate stable complexation of drug in blood by sugar-branched-beta-cyclodextrins (beta-CDs) such as glucose (glu)- or galactose (gal)-branched-beta-CDs and the pharmacokinetic disposition of drug in sugar-branched-beta-CD complex. Complexation of steroidal drugs in sugar-branched-beta-CDs and their replacement by cholesterol were measured. The complexes of dexamethasone/glucosyl-beta-CDs (dexamethasone/glu-beta-CD or dexamethasone/glu-glu-beta-CD) were not replaced by cholesterol, which is a representative endogenous compound, whereas the complex of dexamethasone/beta-CD was replaced by cholesterol. The same results were obtained in steroidal drugs such as hydrocortisone, triamcinolone, and prednisolone. Thus, the use of glu-beta-CD and glu-glu-beta-CD permitted the stable complexation of the drug in water. Stability constants of dexamethasone/glu-glu-beta-CD and dexamethasone/gal-glu-beta-CD complexes are the same, which means that the sugar moiety of the side chain in beta-CD has little effect on stability constants. After the dexamethasone/gal-glu-beta-CD complex or the dexamethasone/glu-glu-beta-CD complex (dexamethasone: 1 mg/body) was administered intravenously to mice, dexamethasone concentrations in liver tissue and blood were measured. The dexamethasone/gal-glu-beta-CD complex (66.1 +/- 1.7 micrograms as dexamethasone/gram of liver tissue) was distributed to liver tissue significantly more than the dexamethasone/glu-glu-beta-CD (beta-CD) complex (59.9 +/- 1.0 micrograms as dexamethasone/gram of liver) at 30 min after administration (p < .05). Sugar-branched-beta-CD gave a water-soluble and stable complex for dexamethasone and changed the disposition of dexamethasone. Sugar-branched-beta-CDs are potentially excellent carriers for a steroidal injectable formulation.  相似文献   

14.
Although interferon gamma (IFN-gamma has been extensively studied as a potent activator for macrophages and as a promising adjuvant in vaccines, its rapid biodegradation and clearance have severely limited its clinical efficacy. Our major objective in this work was to develop formulation conditions to get high association of the cytokine to albumin nanoparticles, without leading any conformational changes and subsequent loss of activity. To achieve this objective, two different formulations were prepared by either 1) incubation between the cytokine and the newly prepared nanoparticles (IFN-NPA) or 2) between the protein and IFN-gamma prior coacervation (IFN-NPB). Steady-state fluorescence emission spectra revealed that the environment of the tryptophan (Trp) residue was not affected by conditions of mechanical stress required for preparing nanoparticles. A bioassay for antiproliferative activity with Hela cells indicated that the cytokine, after their desorption from the surface of nanoparticles (IFN-NPA), fully retained its activity. It also indicated that the cytokine was principally associated with nanoparticles via electrostatic interactions and confirmed by desorption experiments carried out in media with different pH and ionic strength, with burst effect ranked in the order pH 5 > pH 7.4 > pH 8.5. Also, the adsorption of IFN-gamma onto these carriers was able to improve the priming effects of IFN-gamma on the nitric oxide production (NO) by RAW macrophages. On the contrary, when we incubated the cytokine with the albumin solution prior to the desolvation process for preparing nanoparticles (IFN-NPB), we obtained better encapsulation efficiencies (around 100%), but the cytokine was inactive: it was not detected by ELISA or bioassay in Hela cells and unable to stimulate NO production by macrophages.  相似文献   

15.
Norcantharidin (NCTD) is one of the new chemotherapy agents that have anti-tumor activity. However, the clinical potential of NCTD is limited by its high systemic toxicity, poor solubility in physiological environment and short half-life. In this paper, NCTD loaded poly(lactide-co-glycolide) (PLGA) nanoparticles for controlled delivery were prepared by using an interfacial deposition method. The resulting particles were characterized for their size, morphology, drug loading capacity, entrapment efficiency and in vitro drug release over an extended period of 12 days. The interfacial deposition technique succeeded in building a spherical, monodisperse nanoparticulate delivery system with high entrapment efficiency. The in vitro release lasts for more than 10 days showed a biphasic profile with an initial burst. The in vitro anti-tumor activity of NCTD-PLGA nanocapsules was assessed using the Human Hepatocellular Carcinoma cells SMMC-7721 by the MTT test. Ascites hepatoma (H-22H) and pulmonary adenocarcinoma (LA795) mice models were used to study the in vivo tumoricidal efficacy of NCTD delivery from the PLGA nanoparticles. The results demonstrate that i.v. or i.p. administration of this controlled release system could be of high clinical significance in cancer chemotherapy.  相似文献   

16.
A novel strategy is described for the preparation of polymeric hybrid hydrogels containing metal oxide nanoparticles as cross-linkers. TiO2 nanoparticles were functionalized by introducing amine groups onto their surfaces. The functionalized metal oxide nanoparticles were covalently bound to the polymer chains of carboxymethylcellulose and appeared to be organized as clusters with dimensions of 30 nm to 250 nm within the hydrogel. This synthesis method, based on the use of functionalized nanoparticles as cross-linkers, is of general application and it allows for the preparation of other kinds of nanoparticle/polymer hybrid hydrogels. These hybrid hydrogels may have potential applications as novel in vitro scaffolds for tissue engineering, in which the inorganic nanoparticles can simulate the nanostructured architecture of the extra-cellular matrix.  相似文献   

17.
The use of carbon nanomaterials in biomedical applications and the cytotoxicity of these materials have been areas of great interest during the last decade. In vitro drug load and release, as well as in vivo animal tests, have been carried out using carbon nanomaterials. However, no comparison studies on the drug load and the release of different carbon nanomaterials have been reported. Here, we report on a real time investigation of the drug release of carbon black (CB) nanoparticles, carbon nanotubes (CNTs) and graphene oxide (GO), using rhodamine B (RB) as a model of drug. The binding of RB to the nanomaterials were characterized by FTIR and UV–vis. The mass loading capacities of these nanomaterials were also studied, showing that GO had the highest capacity. The real time drug release experiment indicated different accumulative release modes of these nanomaterials at different pH values, due to their different binding modes with RB, which is also discussed as being the reason for the mechanism differences. Moreover, the comparison of the drug release capacity of CNT–RB and f-CNT–RB (functionalized-CNT–RB) indicated an influence of hydrogen bonds in both drug loading and release, as the hydrogen bonds increased the loading capacity of the carbon nanotube after acid treatment and changed the drug release mechanism at pH 7.4. Thus, here we identified the drug release modes of the different carbon nanomaterials. The results of the influence of functional groups and hydrogen bonds point also out a potential way of controlling the drug release behavior of carbon nanomaterials by surface modification.  相似文献   

18.
This study describes the synthesis of magnetite/amphiphilic polymer composite nanoparticles that can be potentially used simultaneously for cancer diagnosis and therapy. The synthesis method was a one-shot process wherein magnetite nanoparticles were mixed with core-crosslinked amphiphilic polymer (CCAP) nanoparticles, prepared using a copolymer of a urethane acrylate nonionomer (UAN) and a urethane acrylate anionomer (UAA). The CCAP nanoparticles had a hydrophobic core and a hydrophilic exterior with both PEG segments and carboxylic acid groups, wherein the magnetite nanoparticles were coordinated and stabilized. According to DLS data, the ratio of UAN to UAA and the ratio of magnetite to polymer are keys to controlling the size and thus, the stability of the composite nanoparticles. The magnetic measurement indicated that the composite nanoparticles had superparamagnetic properties and high saturation magnetization. The preliminary magnetic resonance imaging showed that the particles produced an enhanced image even when their concentration was as low as 80 microg/ml.  相似文献   

19.
An important step in adoptive immunotherapy in general and specifically with respect to cancer treatment is the initiation of an inflammatory T cell response at the tumor site. Here we suggest a new concept for a controlled inflammatory response in which the intrinsic cytotoxic properties of T cells are upgraded with the properties of nanoparticles transfected into the T cells during the ex vivo expansion process. We report in vitro upgrading of human T cells using PEGylated boron carbide nanoparticles functionalised with a translocation peptide aimed at Boron Neutron Capture Therapy (BNCT). A key finding is that the metabolism of such upgraded human T cells were not affected by a payload of 0.13 pg boron per cell and that the nanoparticles were retained in the cell population after several cell divisions. This is vital for transporting nanoparticles by T cells to the tumor site.  相似文献   

20.
采用层层自组装法,以氧化硅微球为模板制备了壳聚糖(CS)/氧化石墨烯(GO)微球,去核后成功地制备了CS/GO中空微胶囊。研究了组装次数、壳聚糖浓度和交联剂京尼平对微球及中空微胶囊形貌的影响,并以布洛芬为药物模型研究了CS/GO中空微胶囊的载药性能及药物缓释性能。实验结果表明,CS/GO中空微胶囊具有完整的中空结构,粒径在760nm左右。增加包裹层数和提高包裹溶液中的壳聚糖浓度都可以增加囊壁的厚度。经交联处理后,CS/GO微胶囊的囊壁更加致密和完整,其对布洛芬的载药率从19%提高至72%,释药时间从10h延长至60h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号