首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermittently mixed batch reactor (IMBR) systems were employed to evaluate the effects of mechanical mixing and corresponding power consumption on rates of phenanthrene desorption from natural and synthetic model sorbent phases to the aqueous phase in dense slurry reactors. Sorbent slurries comprising 57-67% (w/w) solids exhibited non-Newtonian (pseudoplastic) fluid behaviors, with apparent viscosities varying with shear rate. Dimensionless power numbers varied inversely with the Reynolds number under laminar flow conditions, indicating that small increases in mixing revolution number and auger size effect significant increases in power and torque requirements for the mechanical mixing of dense slurries. Rates of release of phenanthrene associated with rapidly desorbing or labile fractions of sorbent organic matter (SOM) to the aqueous phase were markedly enhanced by relatively low-level auger mixing, but significantly less further enhancement was observed as higher levels of mixing were applied. Conversely, desorption of phenanthrene associated with slowly desorbing or resistant fractions of SOM was relatively unaffected by auger mixing, being limited as it is by slow intraparticle-scale diffusion processes that are not enhanced by reactor-scale mixing. The experimental results lead to and support a conclusion that auger mixing at relatively low intensity is an attractive strategy for optimizing dense slurry reactor systems for remediation of hydrophobic organic contaminants associated with labile (rapidly desorbing) fractions of SOM with respect to performance efficiency and cost-effectiveness.  相似文献   

2.
A method using heated and superheated (subcritical) water is described for rapid prediction of long-term desorption rates from contaminated geosorbents. Rates of contaminant release are measured at temperatures between 75 and 150 degrees C using a dynamic water desorption technique. The subcritical desorption rate data are then modeled to calculate apparent activation energies, and these activation energies are used to predict desorption behaviors at any desired ambient temperature. Predictions of long-term release rates based on this methodology were found to correlate well with experimental 25 degrees C desorption data measured over periods of up to 640 days, even though the 25 degrees C desorption rates were observed to vary by up to 2 orders of magnitude for different geosorbent types and initial solid phase contaminant loading levels. Desorption profiles measured under elevated temperature and pressure conditions closely matched those at 25 degrees C and ambient pressure, but the time scales associated with the high-temperature measurements were up to 3 orders of magnitude lower. The subcritical water technique rapidly estimates rates of desorption-resistant contaminant release as well as those for more labile substances. The practical implications of the methodology are significant because desorption observed under field conditions and ambient temperatures typically proceeds over periods of months or years, while the high temperature experiments used for prediction of such field desorption phenomena can be completed within periods of only hours or days.  相似文献   

3.
This research provides particle-scale understanding of PCB and PAH distribution in sediments obtained from three urban locations in the United States: Hunters Point, CA; Milwaukee Harbor, WI; and Harbor Point, NY. The sediments comprised mineral grains (primarily sand, silt, and clays) and carbonaceous particles (primarily coal, coke, charcoal, pitch, cenospheres, and wood). The carbonaceous sediment fractions were separated from the mineral fractions based on their lower density and were identified by petrographic analysis. In all three sediments, carbonaceous particles contributed 5-7% of the total mass and 60-90% of the PCBs and PAHs. The production of carbonaceous particles is not known to be associated with PCB contamination, and it is very unlikely that these particles can be the source of PCBs in the environment Thus, it appears that carbonaceous particles preferentially accumulate PCBs acting as sorbents in the aqueous environment if PCBs are released directly to the sediment or if deposited as airborne soot particles. Aerobic bioslurry treatment resulted in negligible PAH loss from the carbonaceous coal-derived material in Milwaukee Harbor sediment but resulted in 80% of the PAHs being removed from carbonaceous particles in Harbor Point sediment. Microscale PAH extraction and analysis revealed that PAHs in Harbor Point sediment were associated mainly with coal tar pitch residue. PAHs present in semisolid coal tar pitch are more bioavailable than PAHs sorbed on carbonaceous particles such as coal, coke, charcoal, and cenosphere. Results of this study illustrate the importance of understanding particle-scale association of hydrophobic organic contaminants for explaining bioavailability differences among sediments.  相似文献   

4.
The effects of engineered natural organic amendments on two measures of the environmental "availability" of polycyclic aromatic hydrocarbons (PAHs) associated with soil and sediment samples are assessed. Two soils spiked with pyrene alone and a sediment spiked with a mixture of 4 PAH compounds were amended with raw or superheated-water processed peat or soybean stalks, then aged for periods of either 62 or 105 days. The aged soils were then examined with respect to bioaccumulation of spiked pyrene by earthworms (Eisenia foetida), and to its human bioaccessibility as measured by extraction with simulated gastrointestinal fluid. Additions of processed amendments reduced both measures of availability by factors ranging from 7.6 to 27.0 for earthworm bioaccumulation and from 2.3 to 8.8 for gastrointestinal extractability. All PAH compounds spiked to the sediment were reduced to varying extents in their availabilities to E. foetida and leachabilities by water by both processed and raw organic amendments.  相似文献   

5.
Dredged sediment from Milwaukee Harbor showed two primary classes of particles in the <2 mm size range: a lighter-density coal- and wood-derived fraction with 62% of total PAHs and a heavier-density sand, silt, and clay fraction containing the remaining 38% of the PAHs. Room-temperature PAH desorption kinetic studies on separated sediment fractions revealed slow desorption rates for the coal-derived particles and fast desorption rates for the clay/silt particles. The effect of temperature on PAH release was measured by thermal program desorption mass spectrometry to investigate the desorption activation energies for PAHs on the different sediment particles. Three activated diffusion-based models and an activated first-order rate model were used to describe the thermal desorption of PAHs for four molecular weight classes. PAH binding with the coal-derived particles was associated with high activation energies, typically in the range of 115-139 kJ/mol. PAHs bound to the clay/silt material had much lower activation energy, i.e., in the range of 37-41 kJ/ mol for molecular weight 202. Among the desorption models tested, a spherical diffusion model with PAHs located like a rind on the outer 1-3 microm region best described the PAH thermal desorption response for coal-derived particles. This internal PAH distribution pattern on coalderived particles is based on prior direct measurement of PAH locations at the subparticle scale. These studies reveal that heterogeneous particle types in sediment exhibit much different amounts and binding of PAHs. PAHs associated with coal-derived particles aged over several decades in the field appear to be far from reaching an equilibrium sorption state due to the extremely slow diffusivities through the polymer-like coal matrix. These results provide an improved mechanistic perspective for the understanding of PAH mobility and bioavailability in sediments.  相似文献   

6.
An XAD-2 assisted desorption assay was evaluated to assess its functionality in determining the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in an aged field-contaminated sediment. In the study, various dosages of XAD-2 resin were added to abiotic sediment-water slurry systems to adsorb the PAHs from the aqueous phase thus accelerating the desorbability of these contaminants from the sediment. A parallel experiment on the biodegradation of these PAHs by microorganisms indigenous to the sediment was also conducted. Both the desorbability of the PAHs in the XAD-2 assisted desorption assay and their biodegradability decreased with time and eventually approached constant values. The two procedures showed very similar residual concentrations of PAHs for compounds with less than five benzene rings. This suggests that the XAD-2 assisted desorption assay shows promise in measuring the bioavailability of PAHs in field-contaminated sediments and could be used for predicting the end point of PAH bioremediation.  相似文献   

7.
Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from <1% to ca. 50% for the five- and six-ring PAHs. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition (C, H, N, S), or "hard" and "softs" organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. Fvalues for CG site samples obtained with SFE and water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.  相似文献   

8.
As a low-soluble phosphate mineral capable of binding various metal ions, apatite can be used to immobilize toxic metals in soils and waters. In the present research the factors affecting sorption and desorption of Cd2+ and Zn2+ ions on/from apatites are investigated. Batch experiments were carried out using synthetic hydroxy-, fluoride-, and carbonate-substituted apatites having various specific surface area (SSA). Apatite sorption capacity was found to depend mainly on its SSA, ranging from 16 to 78 and from 11 to 79 mmol per 100 g of apatite for Cd2+ and Zn2+, respectively. The solution composition (pH, and presence of Cl- and NO3- ions) had no essential impact on sorption. Desorption of bound cations depended both on the sorption level and solution composition. The amount of desorbed Cd2+ and Zn2+ increased proportionally to the amount of sorbed cations. However, apatites having higher sorption capacity release relatively less sorbed cations. Desorption increases with increasing Ca2+ concentration in the solution, reaching 8-20% of sorbed Cd2+ in 0.002 M, 10-35% in 0.01 M, and 33-45% in 0.05 M Ca(NO3)2 solution. Compared to nitrate solutions, the presence of Cl- ions in the solution promotes the release of bound cations. Desorption of Zn2+ is slightly higher than that of Cd2+. The desorption mechanism was assumed to include both ion-exchange and adsorption of Ca2+ ions on apatite surface.  相似文献   

9.
The addition of activated carbon as particulate sorbent to the biologically active layer of contaminated sediment is proposed as an in-situ treatment method to reduce the chemical and biological availability of hydrophobic organic contaminants (HOCs) such as polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs). We report results from physicochemical experiments that assess this concept. PCB- and PAH-contaminated sediment from Hunters Point Naval Shipyard, San Francisco Bay, CA, was contacted with coke and activated carbon for periods of 1 and 6 months. Sediment treated with 3.4 wt % activated carbon showed 92% and 84% reductions in aqueous equilibrium PCB and PAH concentrations, 77% and 83% reductions in PCB and PAH uptake by semipermeable membrane devices (SPMD), respectively, and reductions in PCB flux to overlying water in quiescent systems up to 89%. Adding coke to contaminated sediment did not significantly decrease aqueous equilibrium PCB concentrations nor PCB or PAH availability in SPMD measurements. Coke decreased PAH aqueous equilibrium concentrations by 38-64% depending on coke dose and particle size. The greater effectiveness of activated carbon as compared to coke is attributed to its much greater specific surface area and a pore structure favorable for binding contaminants. The results from the physicochemical tests suggest that adding activated carbon to contaminated field sediment reduces HOC availability to the aqueous phase. The benefit is manifested relatively quickly under optimum contact conditions and improves in effectiveness with contact time from 1 to 6 months. Activated carbon application is a potentially attractive method for in-situ, nonremoval treatment of marine sediment contaminated with HOCs.  相似文献   

10.
Partitioning and desorption played specific roles in the dechlorination of 2-chlorobiphenyl (2-CIBP) in sediment slurry supernatants, which are suspensions of dissolved organic matter (DOM). In short-term experiments, the partition coefficient (Kp) was related to the apparent dechlorination rate constant. The Kp value (160 L g(DOC)(-1)), which is independent of the DOM concentration, was determined based on the decrease of the apparent rate constant with the increase of the DOM concentration. In the long-term experiments, the overall rate of dechlorination can be described with a two-compartment model. The time constant for the sediment compartment was related to Kp and the desorption rate constant (k(d)). The k(d) value (0.21 h(-1)) was determined based on the decrease of the time constant values with an increasing DOM concentration. The use of DOM suspensions allowed a short time for equilibrium. Separation of the aqueous and DOM phases was not needed due to the dechlorination of 2-CIBP. The fundamental relationships between overall dechlorination rate constant and properties of the contaminant and sediment were established.  相似文献   

11.
This paper presents the quantification of the emission rates of PAH and n-alkane compounds from on-road emissions testing of nine heavy-duty diesel (HDD) vehicles tested using CE-CERT's Mobile Emissions Laboratory (MEL) over the California Air Resources Board (ARB) Four Phase Cycle. Per mile and per CO2 emission rates of PAHs and n-alkanes were highest for operation simulating congested traffic (Creep) and lowest for cruising conditions (Cruise). Significant differences were seen in emission rates over the different phases of the cycle. Creep phase fleet average emission rates (mg mi(-1)) of PAHs and n-alkanes were approximately an order of magnitude higher than Cruise phase. This finding indicates that models must account for mode of operation when performing emissions inventory estimates. Failure to account for mode of operation can potentially lead to significant over- and underpredictions of emissions inventories (up to 20 times), especially in small geographic regions with significant amounts of HDD congestion. Howeverthe PAH and n-alkane source profiles remained relatively constant for the different modes of operation. Variability of source profiles within the vehicle fleet exceeded the variability due to different operating modes. Analysis of the relative risk associated with the compounds indicated the importance of naphthalene as a significant contributor to the risk associated with diesel exhaust. This high relative risk is driven by the magnitude of the emission rate of naphthalene in comparison to other compounds.  相似文献   

12.
Dynamic metal speciation analysis in aquatic ecosystems is emerging as a powerful basis for development of predictions of bioavailability and reliable risk assessment strategies. A given speciation sensor is characterized by an effective time scale or kinetic window that defines the measurable metal species via their labilities. Here we review the current state of the art for the theory and application of dynamic speciation sensors. We show that a common dynamic interpretation framework, based on rigorous flux expressions incorporating the relevant diffusion and reaction steps, is applicable for a suite of sensors that span a range of time scales. Interpolation from a kinetic spectrum of speciation data is proposed as a practical strategy for addressing questions of bioavailability. Case studies illustrate the practical significance of knowledge on the dynamic features of metal complex species in relation to biouptake, and highlight the limitations of equilibrium-based models.  相似文献   

13.
Measures of desorption are currently considered important as potential surrogates for bioaccumulation as measures of the bioavailability of sediment-sorbed contaminants. This study determined desorption rates of four laboratory spiked compounds, benzo[a]pyrene (BaP), 2,4,5,2',4',5'-hexachlorobiphenyl (HCBP), 3,4,3',4'-tetrachlorobiphenyl (TCBP), and pyrene (PY), to evaluate the effect of sediment characteristics. The compounds were sorbed onto seven sediments with a broad range of characteristics. Desorption was measured by Tenax-TA extraction from aqueous sediment suspensions. Desorption rates were modeled using an empirical three compartment model describing operationally defined rapid, slow, and very slow compartments. The sediments were characterized for plant pigments, organic carbon (OC), total nitrogen (TN), lipids, NaOH extractable residue, lignin, amino acids, soot carbon, and particle size fractions. Desorption from the rapid compartment for each of the planar compounds BaP, PY, and TCBP was significantly correlated to sediment characteristics that could be considered to represent younger (i.e., less diagenetically altered) organic matter, e.g., plant pigment, lipid, and lignin contents. However, for these compounds there were no significant correlations between desorption and OC, TN, soot carbon, or amino acid contents. HCBP desorption was different from the three planar molecules. For HCBP, the flux from the rapid compartment was negatively correlated (0.1 > p > 0.05) with the OC content of the sediment. Overall, HCBP desorption was dominated by the amount of OC and the particle size distribution of the sediments, while desorption of the planar compounds was dominated more by the compositional aspects of the organic matter.  相似文献   

14.
The development of ecological tracers to track the flow of energy and nutrients through food webs has provided new insights into the factors that are important in regulating diet composition in wildlife. The Great Lakes Herring Gull Monitoring Program has provided information regarding temporal trends in levels of bioaccumulative contaminants since the early 1970s. In recent years, data from this program have also been generated to examine ecological changes in the Great Lakes. Because the contaminants that are evaluated as part of this program biomagnify, food is the primary determinant of contaminant concentrations in the eggs that are analyzed annually. Fluctuations in diet composition could affect the interpretation of temporal trends by affecting exposure to contaminants. Retrospective analyses involving ecological tracers, i.e., stable nitrogen isotopes and fatty acids, have shown temporal change in the diets of Great Lakes herring gulls at some monitoring colonies. These dietary differences have led to temporal variation in the trophic position of herring gulls. Given that higher trophic level organisms incur greater exposure to biomagnifying contaminants, it is necessary to adjust for these temporal changes in trophic position to get an accurate indication of how contaminant burdens are changing within the Great Lakes ecosystem. Here, we outline a method to adjust for temporal changes in indicator species trophic position and discuss how these adjustments affect the interpretation of contaminant temporal trend monitoring data.  相似文献   

15.
The production and degradation of patulin by a common silage comtaminant, Paecilomyces sp., is described. Utilising protoplasts of the parent organism, 80% degradation of radiolabelled patulin occurs over the 3-h period studied and it is proposed that this degradation effect may account for anomalies in the investigation of suspected mycotoxin poisoning.  相似文献   

16.
Bioremediation of contaminated soils often leaves a desorption-resistant pollutant fraction behind in the soil, which in the present study was isolated with a combination of diffusive carrier and infinite diffusive sink. Such a diffusive sink was made by casting a composite of silicone and activated carbon into the bottom of a large glass. Field-contaminated soil samples were then suspended in a cyclodextrin solution and incubated in such glasses for the continuous trapping of PAH molecules during their release from the soil matrix. The PAH concentrations remaining in the soil were determined by exhaustive extraction and compared with a biodegradation experiment. The concentration decline in the first soil was faster in the contaminant trap than in the biodegradation experiment, but the halting of the biodegradation process before reaching the legal threshold level was well indicated by the contaminant trap. The PAH concentrations in the second soil hardly decreased in the traps at all, in good agreement with the biodegradation experiment. The PAHs in this soil appeared to be "stuck" by strong sorption. The contaminant trap proved to be a practical approach to the isolation and quantification of the desorption-resistant PAH fraction.  相似文献   

17.
On the basis of a combination of laboratory microcosm experiments, column sorption experiments, and the current spatial distribution of groundwater concentrations, the origin of a mixed brominated ethene groundwater plume and its degradation pathway were hypothesized. The contaminant groundwater plume was detected downgradient of a former mineral processing facility, and consisted of tribromoethene (TriBE), cis-1,2-dibromoethene (c-DBE), trans-1,2-dibromoethene (t-DBE), and vinyl bromide (VB). The combined laboratory and field data provided strong evidence that the origin of the mixed brominated ethene plume was a result of dissolution of the dense non-aqueous-phase liquid 1,1,2,2-tetrabromoethane (TBA) atthe presumed source zone, which degraded rapidly (half-life of 0.2 days) to form TriBE in near stoichiometric amounts. TriBE then degraded (half-life of 96 days) to form c-DBE, t-DBE, and VB via a reductive debromination degradation pathway. Slow degradation of c-DBE (half-life >220 days), t-DBE (half-life 220 days), and VB (half-life >220 days) coupled with their low retardation coefficients (1.2, 1.2, and 1.0 respectively) resulted in the formation of an extensive mixed brominated ethene contaminant plume. Without this clearer understanding of the mechanism for TBA degradation, the origin of the mixed brominated ethene groundwater contamination could have been misinterpreted, and inappropriate and ineffective source zone and groundwater remediation techniques could be applied.  相似文献   

18.
19.
Sediments contaminated with organotin compounds (OTs), in particular triorganotins (TOTs), are abundant in areas with high shipping activities. To assess the possible remobilization of these highly toxic compounds from such sediments, a profound understanding of their sorption/desorption behavior is necessary. In this work the extent and reversibility of sorption of OTs to sediments has been investigated using contaminated freshwater harbor sediments and two certified OT containing marine sediments. Experiments conducted with perdeuterated OTs showed that sorption of OTs to sediments is a fast and reversible process involving primarily particulate organic matter (POM) constituents as sorbents. The organic carbon-normalized sediment-water distribution ratios (DOC, expressed in L/kgOC) determined in the laboratory were consistent with in-situ DOCs obtained from OT concentrations measured in sediment and pore water samples from two dated sediment cores. For both butyl- and phenyltin compounds the log DOC values were in the range of 4.7-6.1, and the following sequence was observed: DOC (tri-OT) > or = DOC (di-OT) > or = DOC (mono-OT). However, the differences were much less pronounced than would have been expected for hydrophobic partitioning of the corresponding compounds into POM. These results support our hypothesis from earlier work with dissolved humic acids that OT sorption to sediments occurs primarily by reversible formation of (innerspere) complexes between the tin atom and carboxylate and phenolate ligands present in POM. Because of the high DOC values (i.e. log DOC > or = 4) the diffusion of OTs from deeper sediments to the surface will be rather slow, and thus a major release from undisturbed sediments is not expected. However, because OTs readily desorb, any resuspension of contaminated sediments (e.g., by the tide, storms or dredging activities) will lead to enhanced OT concentrations in the overlaying water column. Furthermore, in contrastto polycyclic aromatic hydrocarbons (PAH) where large fractions may be tightly bound (in)to soot or other carbonaceous materials, OTs will be more readily bioavailable due to the fast and reversible sorption/desorption behavior.  相似文献   

20.
Rates and extents of phenanthrene desorption were studied for more than 250 days as functions of sorbent type, initial loading level, and aging. Apparent first-order desorption rate constants for the slowly desorbing fraction were found to (i) range from 0.00086 to 0.148 days-1 for geosorbents that contain geologically mature kerogen and less rigid humic-type soil organic matter, respectively, (ii) decrease by as much as an order of magnitude with decreasing initial sorbed solid-phase phenanthrene concentration, (iii) decrease by a factor of 2 with increasing aging time for a humic topsoil but remain unaffected by aging time beyond 3 months for a shale, and (iv) be 1-2 orders of magnitude lower than rate constants for the rapidly desorbing phenanthrene fractions for any given contaminated sample. Six models were used to fit the desorption rate data. Biphasic diffusion and biphasic first-order models with three fitting parameters possess broad utility and are potentially useful in a variety of environmental applications. Disadvantages of a five-parameter triphasic first-order desorption model, a two-parameter gamma-function model, and a one- or two-parameter pore diffusion model are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号