共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
超分辨率图像重构是利用关于同一场景的多帧低分辨率图像重构出一幅具有更高分辨率图像的过程。已有的MAP超分辨率图像重构算法由于没有对图像中的不同区域分别处理,所以无法在重构出清晰的边界和更多细节的同时抑制边缘振荡效应的产生。提出了针对图像中的不同区域进行自适应处理的超分辨率图像重构算法,与已有的算法相比,新算法所重构出的图像质量,不论在定量指标上还是人眼主观评判上都有了很大的提高。 相似文献
3.
数字图像超分辨率重建是近20年来兴起的一门新的数字图像处理技术。随着计算机硬件技术和软件设计技术的不断发展,各种数字图像超分辨率重建算法被提出。综述超分辨率重建的相关技术,指出数字图像超分辨率重建技术的未来的发展方向。 相似文献
4.
5.
超分辨率(Super-Resolution,SR)重构技术是指利用一帧或多帧拥有部分细节的低分辨率(Low-Resolution,LR)图像重构出一幅可以提供更多细节信息的高分辨率(High-Resolution,HR)图像。本文通过频域、空域和学习这三个层面的超分辨率重构算法,对图像超分辨率的方法进行了分类对比,重点论述了各算法的优缺点及应用,并展望超分辨率图像重构技术的发展趋势。 相似文献
6.
本文针对POCS超分辨率算法降噪能力差的缺陷,对含噪图像首先利用小波技术进行去噪预处理,然后再用POCS算法复原。实验证明,本文提出的方法对低信噪比序列图像的超分辨率复原有很好的复原效果,并且对各种噪声处理基本有效。 相似文献
7.
8.
基于改进POCS算法的视频图像超分辨率重建 总被引:1,自引:0,他引:1
超分辨率技术是指通过融合多幅模糊、变形、频谱混叠的低分辨率图像来重建一幅高分辨率图像。本文提出一种基于POCS算法的视频图像超分辨率重建方法。POCS算法是图像超分辨率重建中的一种基本方法,本文在传统POCS算法的基础上,对重建过程中的初始高分辨率图像的估计加以改进,利用双3次插值法来获得初始估计;针对重建过程中容易出现的边缘振荡问题,利用边缘检测和修改PSF函数的方法使之得到解决。实验结果表明,重建后的高分辨率图像在提高分辨率的同时很好地保持了图像的细节。 相似文献
9.
提出一种新颖的基于Contourlet的图像超分辨率重构算法,该算法对图像进行Contourlet分解后得到图像的各个方向的细节信息分块处理,根据每个小块在已有的图像库中寻找最佳匹配,恢复出低分辨率损失的系数,然后进行Contourlet重构,得到最终结果。通过采用图像各个方向的信息,重构出的图像更忠实于原图。实验分析表明,该算法能有效地实现图像超分辨重构,得到的结果更加优化。 相似文献
10.
该文提出了一种基于多帧的NEDI超分辨率图像重建算法。该算法先利用POCS方法将多帧序列的运动估计补偿到低分辨率图像中,然后再利用NEDI方法对补偿后的图像进行超分辨率图像重建,通过实验仿真证明该算法是有效的。 相似文献
11.
The topic of super-resolution image reconstruction has recently received considerable attention among the research community.
Super-resolution image reconstruction methods attempt to create a single high-resolution image from a number of low-resolution
images (or a video sequence). The method of projections onto convex sets (POCS) for super-resolution image reconstruction
attracts many researchers’ attention. In this paper, we propose an improvement to reduce the amount of Gibbs artifacts presenting
on the edges of the high-resolution image reconstructed by the POCS method. The proposed method weights the blur PSF centered
at an edge pixel with an exponential function, and consequently decreases the coefficients of the PSF in the direction orthogonal
to the edge. Experiment results show that the modification reduces effectively the visibility of Gibbs artifacts on edges
and improves obviously the quality of the reconstructed high-resolution image. 相似文献
12.
13.
图像超分辨率重建技术对于输入的低分辨率图像进行相关处理,从而重构出高分辨率图像,该技术已经成为图像处理研究领域的一个热点方向。对超分辨率图像重建的研究进展进行了综述。阐述了图像超分辨率重建的基本原理。对基于重建的图像超分辨重建中:IBP,POCS等算法,基于学习的图像超分辨率重建中:稀疏表示,基于深度神经网络等算法及一些相关改进的算法进行了综述。对图像超分辨率重建的研究提出了展望。 相似文献
14.
目的 基于神经网络的图像超分辨率重建技术主要是通过单一网络非线性映射学习得到高低分辨率之间特征信息关系来进行重建,在此过程中较浅网络的图像特征信息很容易丢失,加深网络深度又会增加网络训练时间和训练难度。针对此过程出现的训练时间长、重建结果细节信息较模糊等问题,提出一种多通道递归残差学习机制,以提高网络训练效率和图像重建质量。方法 设计一种多通道递归残差网络模型,该模型首先利用递归方法将残差网络块进行复用,形成32层递归网络,来减少网络参数、增加网络深度,以加速网络收敛并获取更丰富的特征信息。然后采集不同卷积核下的特征信息,输入到各通道对应的递归残差网络后再一起输入到共用的重建网络中,提高对细节信息的重建能力。最后引入一种交叉学习机制,将通道1、2、3两两排列组合交叉相连,进一步加速不同通道特征信息融合、促进参数传递、提高网络重建性能。结果 本文模型使用DIV2K (DIVerse 2K)数据集进行训练,在Set5、Set14、BSD100和Urban100数据集上进行测试,并与Bicubic、SRCNN (super-resolution convolutional neural network)、VDSR (super-resolution using very deep convolutional network)、LapSRN (deep Laplacian pyramid networks for fast and accurate super-resolution)和EDSR_baseline (enhanced deep residual networks for single image super-resolution_baseline)等方法的实验结果进行对比,结果显示前者获取细节特征信息能力提高,图像有了更清晰丰富的细节信息;客观数据方面,本文算法的数据有明显的提升,尤其在细节信息较多的Urban100数据集中PSNR (peak signal-to-noise ratio)平均分别提升了3.87 dB、1.93 dB、1.00 dB、1.12 dB和0.48 dB,网络训练效率相较非递归残差网络提升30%。结论 本文模型可获得更好的视觉效果和客观质量评价,而且相较非递归残差网络训练过程耗时更短,可用于复杂场景下图像的超分辨率重建。 相似文献
15.
在基于低层次计算机视觉的超分辨率图像重建过程中,角点检测和插值是两个关键的技术。首先在SUSAN角点检测算法的基础上提出了改进算法,改进后的算法根据图块对比度的不同,在确定位于不同图块中的像素的USAN面积时采用了可变灰度阈值,可变灰度阈值的采用,使得检测出的角点分布更加均匀,而角点分布均匀则使得图像配准更加精确,有利于后期的重建工作。其次,提出了一种适合于超分辨率图像重建的插值算法:基于圆区域的自适应插值算法。该算法可以根据待插值点周围的灰度特征自适应决定插值策略,将线性插值、最邻近插值和中值插值法有机地结合在一起。大量的仿真实验证明了提出算法具有运算量小、图像重建后的效果出重,易于实现。 相似文献
16.
图像超分辨率重构是指由低分辨率图像来获得高分辨率图像的过程。为了能够有效地重构出高分辨率图像,提出一种基于图像局部自相似性的超分辨率快速重构算法。该算法首先利用四叉树分割的知识对低分辨率图像进行自适应分块;然后利用低分辨率图像和高分辨率图像在局部区域内的自相似性,由最小二乘方法在各个局部区域自适应的选择插值所需的参数,从而在各个局部区域内进行插值;最后运用小波域的投影算子对插值得到的高分辨率图像进行全局优化,得到最终的高分辨率图像。实验结果表明,由该算法重构的高分辨图像有很好的视觉效果和峰值信噪比。 相似文献
17.
18.
目的 现有的超分辨卷积神经网络为了获得良好的高分辨率图像重建效果需要越来越深的网络层次和更多的训练,因此存在了对于样本数量依懒性大,参数众多致使训练困难以及训练所需迭代次数大,硬件需求大等问题。针对存在的这些问题,本文提出一种改进的超分辨率重建网络模型。方法 本文区别于传统的单输入模型,采取了一种双输入细节互补的网络模型,在原有的SRCNN单输入模型特征提取映射网络外,添加了一个新的输入。本文结合图像局部相似性,构建了一个细节补充网络来补充图像特征,并使用一层卷积层将细节补充网络得到的特征与特征提取网络提取的特征融合,恢复重建高分辨率图像。结果 本文分别从主观和客观的角度,对比了本文方法与其他主流方法之间的数据对比和效果对比情况,在与SRCNN在相似网络深度的情况下,本文方法在放大3倍时的PSNR数值在Set5以及Set14数据下分别比SRCNN高出0.17 dB和0.08 dB。在主观的恢复图像效果上,本文方法能够很好的恢复图像边缘以及图像纹理细节。结论 实验证明,本文所提出的细节互补网络模型能够在较少的训练以及比较浅的网络下获得有效的重建图像并且保留更多的图像细节。 相似文献