共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
为了有效地分割灰度不均匀图像,提出了一种区域自适应主动轮廓模型,在该模型中,定义了一个包含全局能量项和局部能量项的能量泛函。在算法的初期,全局能量项占主导地位,它具有收敛速度快、对初始轮廓不敏感的优点。在算法的后期,局部能量项占主导地位,它具有定位精度高的优点。理论分析和实验结果表明,该模型具有收敛速度快、分割精度高、对初始轮廓不敏感等优点。 相似文献
3.
基于先验形状信息的水平集图像分割 总被引:1,自引:0,他引:1
针对现有水平集方法对于具有强噪声或弱边界的目标进行分割时存在的问题,提出了一种基于形状先验的图像分割方法.该模型采用变分水平集方法,融合了区域特征和边界轮廓特征,并通过相似性匹配选择最佳先验形状.该模型不仅对具有强噪声和弱边界的复杂图像具有较好的分割效果,而且有效地解决了曲线演化的初始轮廓的确定问题.与传统方法进行对比实验,结果表明,该方法具有较好的分割效果和较高的准确率. 相似文献
4.
心脏磁共振图像的分割是心脏功能辅助诊断和分析的基础,而左心室轮廓的提取则是正确分割心脏磁共振图像的关键。提出了一种提取心脏磁共振图像中左心室轮廓的方法。该方法首先采用一种自适应边缘保持平滑算法对心脏磁共振图像作平滑处理,接着采用K均值聚类算法对心脏磁共振图像作聚类分析,然后采用基于变分水平集方法的几何主动轮廓线模型提取左心室轮廓。实验表明,该方法能够克服心脏磁共振图像中的噪声和心脏周边组织的影响,而且具有较好的准确性和鲁棒性。 相似文献
5.
图像分割是图像处理中的关键技术之一,Osher和Sethian提出的水平集方法有效地解决了以前算法不能解决在曲线演化过程中的拓扑变化问题。目前,基于水平集方法的图像分割算法很多,对于不同应用领域的图像处理问题,人们都提出了相应的解决方法,而且大量的研究者还在不断改进和提高这些算法的效率和有效性。因此,本文按照水平集算法在图像分割中应用的发展历程将其分为3种情况进行了综述,以此为该领域读者提供借鉴。 相似文献
6.
7.
一种新的窄带快速区域水平集C-V模型图像分割方法 总被引:1,自引:1,他引:1
Chan-Vese提出了区域水平集图像分割C-V模型,该模型随着水平集函数的演化,演化曲线能自然地改变其拓扑结构,因而在很多研究领域有着广泛的应用,特别是在图像分割、目标跟踪领域取得了显著的效果。基于区域的水平集函数比基于梯度的水平集函数在抗噪声方面也表现得更优秀,但是其演化水平集函数也更复杂,主要缺点是演化速度特别慢,限制了在大型高分辫率图像分割中的应用。针对此问题,提出了一种窄带快速区域水平集C-V模型,即先利用GV水平集在低分辨率的图像上检测出大致的边缘,然后映射到高分辨率的图像上,在其边缘的一个窄带内检测更为精确的边缘,其检测速度有了很大的提高。采用高分辫率的大型合成孔径雷达(SAR)遥感图像进行的实验证明了该方法能够快速而有效地提取出海岸线,满足工程中的实际应用。 相似文献
8.
图像分割是图像工程中热门且举足轻重的一项研究.图像分割的本质是将感兴趣的目标从图像背景中提取出来,以便后续处理,是图像工程中十分关键的一步.重点研究水平集方法在图像分割技术中的应用,通过水平集方法能够将图像梯度信息、区域统计信息和目标形状等信息融入分割框架中,能出色地控制轮廓的演化,同时减少了计算量,从而获得更高的分割... 相似文献
9.
10.
用于图像分割的自适应距离保持水平集演化 总被引:15,自引:0,他引:15
Li等人提出的距离保持水平集方法有传统变分水平集方法不具备的许多优点,然而,它有初始曲线必须包围目标物体或完全置于目标物体内部或外部的缺点.提出一种自适应距离保持水平集方法,它无须初始曲线包围目标物体或完全置于目标物体内部或外部,即初始曲线可以置于图像的任何地方.它能够解决原方法所不能解决的一些图像分割问题,例如,能够从任意选取的一条初始曲线出发自动检测目标物体的内外轮廓,检测多目标物体以及深度凹陷区域的边缘,并能较好地提取目标物体的弱边界.对几幅具有不同目标边界形态的合成图像和自然图像进行了实验,结果都取得了预期的分割效果. 相似文献
11.
目的 传统的极化SAR图像分割方法中,由于采用的统计分布模型不能较好地描述高分辨率的图像纹理特征,导致高分辨率极化SAR图像分割效果较差。针对这个问题,本文将具有广泛适用性的KummerU分布嵌入到水平集极化SAR图像分割方法中,提出了一种新的极化SAR图像分割算法。方法 将KummerU分布作为高分辨率极化SAR图像的统计模型,定义一种适用于极化SAR图像分割的能量泛函;利用最大似然法对各个区域的KummerU分布进行参数估计,并通过数值偏微分方程的方法求解水平集函数,实现极化SAR图像的区域分割。结果 分别对仿真全极化数据,真实全极化数据进行分割实验,结果表明本文提出的方法其分割精度高于传统方法,分割精度高于95%,从而验证了新方法的有效性。结论 本文算法能够对各向同质区和各向异质区的极化SAR图像都能取得良好的分割效果,并适应于多种场景,有效地分割出背景和目标。 相似文献
12.
A new level set method for inhomogeneous image segmentation 总被引:2,自引:0,他引:2
Intensity inhomogeneity often appears in medical images, such as X-ray tomography and magnetic resonance (MR) images, due to technical limitations or artifacts introduced by the object being imaged. It is difficult to segment such images by traditional level set based segmentation models. In this paper, we propose a new level set method integrating local and global intensity information adaptively to segment inhomogeneous images. The local image information is associated with the intensity difference between the average of local intensity distribution and the original image, which can significantly increase the contrast between foreground and background. Thus, the images with intensity inhomogeneity can be efficiently segmented. What is more, to avoid the re-initialization of the level set function and shorten the computational time, a simple and fast level set evolution formulation is used in the numerical implementation. Experimental results on synthetic images as well as real medical images are shown in the paper to demonstrate the efficiency and robustness of the proposed method. 相似文献
13.
灰度不均严重影响图像分割的准确性,主动轮廓模型广泛应用于图像分割中。为了克服灰度不均对图像分割的影响,提出了一种基于变分水平集的主动轮廓模型。该模型利用了图像局部统计信息的均值和方差,适合对灰度不均图像分割。为了检验算法的性能,利用该算法和经典算法作对比实验,结果表明,不管是对合成图像还是真实图像的分割,都验证了该方法的有效性,而且该方法在曲线演化过程中无需重新初始化水平集函数,在一定程度上减少了计算量。 相似文献
14.
医学图像分割是医学图像处理中的关键问题之一.图像序列的分割操作是医学图像三维重建的必要准备,而软组织图像分割则是医学图像分割中的一大难点.基于曲线演化理论的,借助偏微分方程等数学工具的水平集方法已经被广泛应用于医学图像分割领域.介绍了水平集方法的数学模型,并设计了一种基于窄带水平集方法的,专门针对软组织图像分割的算法.用边界追踪等方法提取第一层图片中的软组织相关轮廓;将它们作为初始水平集曲线,再利用窄带水平集方法进行演化;经过两个阶段的迭代处理,最终自动分割出整个软组织图像序列.实验表明该算法具有较高效率、分割结果精确,所产生的分割结果可以作为三维重建的合适的数据集. 相似文献
15.
16.
针对水平集方法在图像分割中需要多次迭代,且计算量大的问题,提出一种基于图割与双水平集的图像分割方法。首先在目标边界内外部各设置一条初始轮廓线和一个阈值,通过双水平集方法对轮廓线进行演化。当轮廓线的能量变化率小于给定阈值时,终止水平集演化。将得到的两条轮廓线化为源点和汇点,通过图割方法得到最终目标边界。该方法有效减少了水平集迭代次数,提高了分割效率,而且给出了一种终止水平集迭代的方式。实验表明该方法具有较好的分割效果和较高的分割效率。 相似文献
17.
A stochastic structure for single and multi-agent level set method is investigated in this article in an attempt to overcome local optima problems in image segmentation. Like other global optimization methods that take advantage of random operators and multi-individual search algorithms, the best agent in this proposed algorithm plays the role of leader in order to enable the algorithm to find the global solution. To accomplish this, the procedure employs a set of stochastic partial differential equations (SPDE), each one of which evolves based on its own stochastic dynamics. The agents are then compelled to simultaneously converge to the best available topology. Moreover, the stochastic dynamics of each agent extends the stochastic level set approach by using a multi source structure. Each source is a delta function centered on a point of evolving front. Lastly, while the computational costs of these methods are higher than the region-based level set method, the probability of finding the global solution is significantly increased. 相似文献
18.
针对高噪声、低对比度的医学图像难以快速准确分割的问题,结合基于像素的传统方法和基于水平集的活动轮廓模型,提出了一种混合的医学图像分割新技术.首先依据待分割对象的先验知识交互选取感兴趣区域.然后由传统的方法和基于水平集的C-V模型结合实现感兴趣区域图像的预分割.预分割的结果直接作为窄带变分水平集模型的初始轮廓,演化曲线在很短的时间内准确收敛到待分割物体的边缘. 相似文献
19.
针对手指静脉图像中存在的弱边缘、灰度不均匀以及低对比度等现象,提出一种结合偶对称Gabor滤波与水平集思想的分割算法,并应用于手指静脉图像的分割。首先,使用偶对称Gabor滤波算法,对手指静脉图像从8个不同的方向分别进行滤波运算;然后,根据8个方向上的滤波结果进行图像重建,得到目标与背景灰度对比度显著提高的图像;最后,应用结合局部与全局信息的水平集方法对手指静脉图像进行分割。将所提算法与Li等水平集算法(LI C, HUANG R, DING Z, et al. A variational level set approach to segmentation and bias correction of images with intensity inhomogeneity. MICCAI'08: Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part II. Berlin: Springer, 2008: 1083-1091)、Legendre水平集(L2S)算法相比,所提算法在分割精度评价标准面积差异(AD)百分比上分别降低了1.116%、0.370%,相对差异度(RDD)分别降低了1.661%、1.379%。实验结果表明,与传统只考虑局部信息或全局信息的水平集图像分割算法相比,所提算法能取得更高的分割精度。 相似文献