首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The respiratory syncytial virus (RSV) G glycoprotein promotes differentiation of type 2 CD4+ T lymphocytes and induces an eosinophilic response in lungs of RSV-infected mice. A unique feature of G is that a second initiation codon in the transmembrane region of the glycoprotein results in secretion of soluble protein from infected cells. Recombinant vaccinia viruses that express wild-type G (vvWT G), only secreted G (vvM48), or only membrane-anchored G (vvM48I) were used to define the influence of G priming on immunopathogenesis. Mice immunized with vvM48 had more severe illness following RSV challenge than did mice primed with vvWT G or vvM48I. Coadministration of purified G during priming with the construct expressing membrane-anchored G shifted immune responses following RSV challenge to a more Th2-like response. This was characterized by increased interleukin-5 in lung supernatants and an increase in G-specific immunoglobulin G1 antibodies. Eosinophils were present in the infiltrate of all mice primed with G-containing vectors but were greatest in mice primed with regimens including secreted G. These data suggest the form of G protein available for initial antigen processing and presentation is an important factor in promoting Th2-like immune responses, including the induction of lung eosinophilia. The ability of RSV to secrete G protein may therefore represent a viral strategy for immunomodulation and be a key determinant of disease pathogenesis.  相似文献   

2.
We found that feeding keyhole limpet hemocyanin (KLH) to CD8-deficient (CD8-/-) mice induced oral tolerance that was comparable in both magnitude and quality to that induced in wild-type (wt) mice. The tolerance was dose dependent, and only higher doses of KLH caused significant reduction in specific Ab and T cell responses. Both Th1 and Th2 CD4+ T cell functions were affected. Feeding KLH together with cholera toxin (CT) adjuvant, however, abrogated the induction of oral tolerance equally well in CD8-/- and wt mice. On the contrary, CT adjuvant was unable to abrogate already established oral tolerance in both CD8-/- and wt mice. Most importantly, whereas Ag feeding induced hyporesponsiveness in systemic as well as in local gut IgA responses in wt mice, a lack of local suppression was evident in orally tolerant CD8-/- mice following oral immunizations. Thus, contrary to the situation in wt mice, Ag feeding induces systemic, but not local, gut IgA hyporesponsiveness in CD8-/- mice, suggesting that CD8+ T cells in the normal gut mucosa exert an important down-regulatory function. In wt mice the local suppression extended to an unrelated Ag, OVA, given together with KLH and CT adjuvant, i.e., bystander suppression. Based on these results we propose that tolerance induced by feeding Ag is highly compartmentalized, requiring CD8+ T cells for local suppression of IgA responses, whereas systemic tolerance may affect CD4+ T cells of both Th1 and Th2 types independently of CD8+ T cells. Finally, the adjuvant effect of CT abrogates induction, but not established, oral tolerance through a mechanism that does not require CD8+ T cells.  相似文献   

3.
The purpose of this study was to explore whether repeated exposure to aerosolized ovalbumin (OVA) in the context of local expression of GM-CSF can initiate a Th2-driven, eosinophilic inflammation in the airways. On day -1, Balb/c mice were infected intranasally with an adenovirus construct expressing GM-CSF (Ad/GM-CSF). From day 0 to day 9 mice were exposed daily to an OVA aerosol. Mice exposed to OVA alone did not show any evidence of airway inflammation. Mice receiving both Ad/GM-CSF and aerosolized OVA exhibited marked airway inflammation characterized by eosinophilia and goblet cell hyperplasia. Migration of eosinophils into the airway was preceded by a rise in IL-5 and IL-4. Both IL-5 and class II MHC were critically required to generate airway eosinophilia. After resolution, airway eosinophilia was reconstituted after a single OVA exposure. Flow cytometric analysis of dispersed lung cells revealed an increase in macrophages and dendritic cells expressing B7.1 and B7.2, and expansion of activated (CD69-expressing) CD4 and CD8 T cells in mice exposed to OVA and Ad/GM-CSF. Our data indicate that expression of GM-CSF in the airway compartment increases local antigen presentation capacity, and concomitantly facilitates the development of an antigen-specific, eosinophilic inflammatory response to an otherwise innocuous antigen.  相似文献   

4.
Precursor CD4+ T cells develop into effector Th1 and Th2 cells that play a central role in the immune response. We show that the JNK MAP kinase pathway is induced in Th1 but not in Th2 effector cells upon antigen stimulation. Further, the differentiation of precursor CD4+ T cells into effector Th1 but not Th2 cells is impaired in JNK2-deficient mice. The inability of IL-12 to differentiate JNK2-deficient CD4+ T cells fully into effector Th1 cells is caused by a defect in IFNgamma production during the early stages of differentiation. The addition of exogenous IFNgamma during differentiation restores IL-12-mediated Th1 polarization in the JNK2-deficient mice. The JNK MAP kinase signaling pathway, therefore, plays an important role in the balance of Th1 and Th2 immune responses.  相似文献   

5.
Prior studies in CD4-deficient mice established the capacity of T helper (Th) lineage cells to mature into Th1 cells. Unexpectedly, challenge of these mice with Nippostrongylus brasiliensis, a Th2-inducing stimulus, failed to result in the development of Th2 cells. Additional studies were performed using CD4+ or CD4-CD8- (double-negative) T cell receptor (TCR) transgenic T cells reactive to LACK antigen of Leishmania major. Double-negative T cells were unable to develop into Th2 cells in vivo, and, unlike CD4+ T cells, could not be primed for interleukin-4 production in vitro. Similarly, CD4+ TCR transgenic T cells primed on antigen-presenting cells expressing mutant MHC class II molecules unable to bind CD4 did not differentiate into Th2 cells. These data suggest that interactions between the TCR, MHC II-peptide complex and CD4 may be involved in Th2 development.  相似文献   

6.
Differentiation of naive CD4+ lymphocytes into either Th1 or Th2 cells is influenced by the cytokine present during initial Ag priming. IL-4 is the critical element in the induction of Th2 response; however, its origin during a primary immune response is not well defined. In the present study, we characterized a novel potential source of IL-4, the class I-selected CD4-CD8-TCR-alpha beta+ T cells. In a first set of experiments, we demonstrated that CD4-CD8-TCR-alpha beta+ thymocytes produce a large amount of IL-4 after in vitro anti-CD3 stimulation. This phenomenon was not observed in class I-deficient mice, demonstrating that among these cells, the class I-selected subset was predominantly responsible for IL-4 production. Further studies focused on the in vivo IL-4-producing capacity of peripheral CD4-CD8-TCR-alpha beta+ T cells. To this end, a single injection of anti-CD3 mAb, which promptly induces IL-4 mRNA expression, was used. Peripheral CD4-CD8-TCR-alpha beta+ T cells express high levels of IL-4 mRNA in response to in vivo anti-CD3 challenge. Furthermore, analysis performed in mice lacking MHC class I or class II molecules demonstrates that both the class I-selected subset of CD4-CD8-TCR+ and CD4+ peripheral T lymphocytes are the major IL-4 producers after in vivo anti-CD3 stimulation. These findings suggest that class I-selected CD4-CD8-TCR-alpha beta+ and CD4+ T cell populations are important sources of IL-4 probably implicated in the development of specific Th2 immune responses.  相似文献   

7.
Eosinophil accumulation is a distinctive feature of lung allergic inflammation. Here, we have used a mouse model of OVA (ovalbumin)-induced pulmonary eosinophilia to study the cellular and molecular mechanisms for this selective recruitment of eosinophils to the airways. In this model there was an early accumulation of infiltrating monocytes/macrophages in the lung during the OVA treatment, whereas the increase in infiltrating T-lymphocytes paralleled the accumulation of eosinophils. The kinetics of accumulation of these three leukocyte subtypes correlated with the levels of mRNA expression of the chemokines monocyte chemotactic peptide-1/JE, eotaxin, and RANTES (regulated upon activation in normal T cells expressed and secreted), suggesting their involvement in the recruitment of these leukocytes. Furthermore, blockade of eotaxin with specific antibodies in vivo reduced the accumulation of eosinophils in the lung in response to OVA by half. Mature CD4+ T-lymphocytes were absolutely required for OVA-induced eosinophil accumulation since lung eosinophilia was prevented in CD4+-deficient mice. However, these cells were neither the main producers of the major eosinophilic chemokines eotaxin, RANTES, or MIP-1alpha, nor did they regulate the expression of these chemokines. Rather, the presence of CD4+ T cells was necessary for enhancement of VCAM-1 (vascular cell adhesion molecule-1) expression in the lung during allergic inflammation induced by the OVA treatment. In support of this, mice genetically deficient for VCAM-1 and intercellular adhesion molecule-1 failed to develop pulmonary eosinophilia. Selective eosinophilic recruitment during lung allergic inflammation results from a sequential accumulation of certain leukocyte types, particularly T cells, and relies on the presence of both eosinophilic chemoattractants and adhesion receptors.  相似文献   

8.
Although activated CD4+ T cells have been implicated in the pathogenesis of asthma, the direct contribution of this leukocyte to the induction of aeroallergen-induced bronchial hyperreactivity and lung damage is unknown. In the present investigation, we have used a model of allergic airways inflammation, which displays certain phenotypic characteristics of late-phase asthmatic responses, together with interleukin-5-deficient (IL-5-/- ) mice and donor antigen-specific CD4+ TH2-type cells to obtain unequivocal evidence for a role of this T lymphocyte in the pathophysiology of allergic airways inflammation. Antigen-primed CD4+ T cells and CD4- cells (CD4+-depleted population) were purified from the spleens of ovalbumin (OVA)-sensitized wild-type mice and adoptively transferred to OVA-sensitized and nonsensitized IL-5-/- mice. In vitro stimulation of the purified cell populations with OVA resulted in the secretion of IL-4 and IL-5, but not interferon-gamma, from the CD4+ T cells, indicating that they were of the TH2 type. In contrast, interferon-gamma, but not IL-4 and IL-5, was produced by the CD4- T cells. The CD4+ TH2-type cells (but not the CD4 cells) reconstituted aeroallergen (OVA)-induced blood and airways eosinophilia, lung damage, and airways hyperreactivity to 1-methacholine in IL-5-/- mice. The reconstitution did not require prior sensitization of the mice, but it did not occur if they were aerosolized with saline instead of OVA. The circulating levels of OVA-specific -IgE and -IgG1 were not significantly altered by the adoptive transfer of either cell population. These investigations establish that IL-5-secreting CD4+ TH2-type cells play a pivotal role in generating blood and airways eosinophilia and in the subsequent development of bronchial hyperreactivity and lung damage that occurs in response to aeroallergens.  相似文献   

9.
CD4+ and CD8+ T cells can be divided based on the cytokines that they secrete into type 1 (Th1, Tc1) and type 2 (Th2, Tc2) subsets. Schistosoma mansoni infection in mice is characterized by a type 2-dominated response. We have used intracellular cytokine staining to demonstrate dramatic changes in the relative numbers of Tc1 and Th2 cells in the spleens of mice during acute schistosome infection. In infected mice prior to egg laying a generalized type 1 response dominated, and was associated with an expansion in the frequency of Tc1 and Th1 cells. By week 7 after infection the cytokine response was of type 2, with an increase in the numbers of Th2 cells and a dramatic reduction in the frequency of Tc1 cells. Following the onset of egg laying there was apoptosis of cells in the spleens of mice, with CD4+ and in particular CD8+ T cells undergoing apoptosis. The loss of CD8+ T cells may in part be attributable to the development of a type 2 environment, following egg laying, with type 2 responses mediating the apoptosis of Tc1 cells. Schistosome regulation of Tc1 during egg laying may be required to prevent type 1 inflammatory responses from exacerbating egg-induced pathology.  相似文献   

10.
A T cell activation antigen, Ly6C, is considered to be involved in the autoimmunity of some autoimmune-prone mice; however, the function of Ly6C remains largely unknown. We prepared a rat anti-mouse Ly6C monoclonal antibody (mAb) (S14) that inhibits the proliferation of peripheral T cells stimulated with anti-CD3 mAb in vitro. S14 mAb, the specificity of which is confirmed by a cDNA transfectant, recognizes Ly6C antigen preferentially expressed on a part of CD8+ T cells in peripheral lymphoid organs. The immunohistochemical analysis demonstrates that Ly6C appears on CD8+ T cells in the conventional T cell-associated area of BALB/c but not of nonobese diabetic (NOD) mice, confirming the absence of Ly6C+ T cells in NOD mice. Addition of soluble S14 mAb to the culture does not influence the proliferation of T cells in vitro; however, the S14 mAb coated on the plate clearly inhibits the proliferation and IL-2 production of anti-CD3-stimulated peripheral T cells. The T cells are arrested at the transitional stage from G0/G1 to S+G2/M phases, but they are not induced to undergo apoptotic changes in vitro. This inhibitory signal provided through the Ly6C molecule inhibited IL-2 secretion in a subpopulation of the activated CD4+ T cells. Ly6C is expressed on T cell clones of both Th1 and Th2 cells, but the cytokine secretion from Th1 clones is preferentially inhibited. These results suggest that Ly6C mediates an inhibitory signal for secretion of cytokines from Th1 CD4+ T cells, potentially causing the inhibition of immune response in peripheral lymphoid tissues.  相似文献   

11.
12.
Murine T-helper clones are classified into two distinct subsets (Th1 and Th2) on the basis of their patterns of lymphokine secretion. Th1 clones secrete interleukin-2 (IL-2), tumour necrosis factor-beta (TNF-beta) and interferon-gamma (IFN-gamma), whereas Th2 clones secrete IL-4, IL-5 and IL-10 (ref. 1). These subsets are reciprocally regulated by IL-4, IL-10 and IFN-gamma and differentially promote antibody or delayed-type hypersensitivity responses. To evaluate whether IL-4 is required for mounting Th2 responses, we generated IL-4-mutant mice (IL-4-/-) and assessed the cytokine secretion pattern of T cells both from naive and Nippostrongylus brasiliensis infected mice. CD4+ T cells from naive IL-4-/- mice failed to produce Th2-derived cytokines after in vitro stimulation. The levels of Th2 cytokines IL-5, IL-9 and IL-10 from CD4+ T cells obtained after nematode infection were significantly reduced. The reduced IL-5 production in IL-4-/- mice correlated with reduced helminth-induced eosinophilia, which has been shown to be dependent on IL-5 in vivo. We conclude that IL-4 is required for the generation of the Th2-derived cytokines and that immune responses dependent on these cytokines are impaired.  相似文献   

13.
It has been established that insulin-dependent diabetes mellitus (IDDM) in nonobese diabetic (NOD) mice results from a CD4+ and CD8+ T cell-dependent autoimmune process directed against the pancreatic beta cells. The precise roles that beta cell-reactive CD8+ and CD4+ T cells play in the disease process, however, remain ill defined. Here we have investigated whether naive beta cell-specific CD8+ and CD4+ T cells can spontaneously accumulate in pancreatic islets, differentiate into effector cells, and destroy beta cells in the absence of other T cell specificities. This was done by introducing Kd- or I-Ag7-restricted beta cell-specific T cell receptor (TCR) transgenes that are highly diabetogenic in NOD mice (8.3- and 4.1-TCR, respectively), into recombination-activating gene (RAG)-2-deficient NOD mice, which cannot rearrange endogenous TCR genes and thus bear monoclonal TCR repertoires. We show that while RAG-2(-/-) 4.1-NOD mice, which only bear beta cell-specific CD4+ T cells, develop diabetes as early and as frequently as RAG-2+ 4.1-NOD mice, RAG-2(-/-) 8.3-NOD mice, which only bear beta cell-specific CD8+ T cells, develop diabetes less frequently and significantly later than RAG-2(+) 8.3-NOD mice. The monoclonal CD8+ T cells of RAG-2(-/-) 8.3-NOD mice mature properly, proliferate vigorously in response to antigenic stimulation in vitro, and can differentiate into beta cell-cytotoxic T cells in vivo, but do not efficiently accumulate in islets in the absence of a CD4+ T cell-derived signal, which can be provided by splenic CD4+ T cells from nontransgenic NOD mice. These results demonstrate that naive beta cell- specific CD8+ and CD4+ T cells can trigger diabetes in the absence of other T or B cell specificities, but suggest that efficient recruitment of naive diabetogenic beta cell-reactive CD8+ T cells to islets requires the assistance of beta cell-reactive CD4+ T cells.  相似文献   

14.
The T cell-mediated lung inflammation that is associated with allergic asthma is characterized mainly by massive eosinophil infiltration, which induces airway injury and the subsequent late-phase reactivity. Because Th2 cells are often isolated from asthmatic subjects, these cells are postulated to play a role in asthma pathogenesis. We report that adoptively transferred, influenza hemagglutinin-specific Th1 and Th2 cells induced different patterns of chemokines leading to different types of cellular infiltration. Th2 cells were sufficient to induce dramatic Ag-dependent lung eosinophilia and eotaxin expression; by contrast, Th1 transfer primarily induced neutrophil recruitment with little eotaxin production. To determine whether Th1 cells show inhibitory effects on Th2 cell-mediated responses, Th1 and Th2 cells were cotransferred. Hemagglutinin-specific Th1 cells did not inhibit Ag-induced lung eosinophilia, nor did they inhibit eotaxin expression. Furthermore, influenza virus infection of the lung in mice receiving hemagglutinin-specific Th2 cells also induced eotaxin expression and eosinophilia that could not be inhibited by the cotransfer of Th1 cells. Our results show that Th2-mediated allergic lung inflammation coexists with the Th1-mediated responses that are stimulated by diverse forms of Ags.  相似文献   

15.
Interleukin-12 (IL-12) induces differentiation of T helper 1 (Th1) cells, primarily through its ability to prime T cells for high interferon-gamma (IFN-gamma) production. We now report that the presence of IL-12 during the first several days of in vitro clonal expansion in limiting dilution cultures of polyclonally stimulated human peripheral blood CD4+ and CD8+ T cells also induces stable priming for high IL-10 production. This effect was demonstrated with T cells from both healthy donors and HIV+ patients. Priming for IL-4 production, which requires IL-4, was maximum in cultures containing both IL-12 and IL-4. IL-4 modestly inhibited the IL-12-induced priming for IFN-gamma, but almost completely suppressed the priming for IL-10 production. A proportion of the clones generated from memory CD45RO+ cells, but not those generated from naive CD45RO- CD4+ T cells, produced some combinations of IFN-gamma, IL-10, and IL-4 even in the absence of IL-12 and IL-4, suggesting in vivo cytokine priming; virtually all CD4+ clones generated from either CD45RO(-) or (+) cells, however, produced high levels of both IFN-gamma and IL-10 when IL-12 was present during expansion. These results indicate that each Th1-type (IFN-gamma) and Th2-type (IL-4 and IL-10) cytokine gene is independently regulated in human T cells and that the dichotomy between T cells with the cytokine production pattern of Th1 and Th2 cells is not due to a direct differentiation-inducing effect of immunoregulatory cytokines, but rather to secondary selective mechanisms. Particular combinations of cytokines induce a predominant generation of T cell clones with anomalous patterns of cytokine production (e.g., IFN-gamma and IL-4 or IFN-gamma and IL-10) that can also be found in a proportion of fresh peripheral blood T cells with "memory" phenotype or clones generated from them and that may identify novel Th subsets with immunoregulatory functions.  相似文献   

16.
Mice with a null mutation of the gene encoding interferon consensus sequence-binding protein (ICSBP) develop a chronic myelogenous leukemia-like syndrome and mount impaired responses to certain viral and bacterial infections. To gain a mechanistic understanding of the contributions of ICSBP to humoral and cellular immunity, we characterized the responses of control and ICSBP-/- mice to infection with influenza A (flu) and Leishmania major (L. major). Mice of both genotypes survived infections with flu, but differed markedly in the isotype distribution of antiflu antibodies. In sera of normal mice, immunoglobulin (Ig)G2a antibodies were dominant over IgG1 antibodies, a pattern indicative of a T helper cell type 1 (Th1)-driven response. In sera of ICSBP-/- mice, however, IgG1 antibodies dominated over IgG2a antibodies, a pattern indicative of a Th2-driven response. The dominance of IgG1 and IgE over IgG2a was detected in the sera of uninfected mice as well. A seeming Th2 bias of ICSBP-deficient mice was also uncovered in their inability to control infection with L. major, where resistance is known to be dependent on IL-12 and IFN-gamma as components of a Th1 response. Infected ICSBP-deficient mice developed fulminant, disseminated leishmaniasis as a result of failure to mount a Th1-mediated curative response, although T cells remained capable of secreting IFN-gamma and macrophages of producing nitric oxide. Compromised Th1 differentiation in ICSBP-/- mice could not be attributed to hyporesponsiveness of CD4(+) T cells to interleukin (IL)-12; however, the ability of uninfected and infected ICSBP-deficient mice to produce IL-12 was markedly impaired. This indicates that ICSBP is a deciding factor in Th responses governing humoral and cellular immunity through its role in regulating IL-12 expression.  相似文献   

17.
We used normal, CD4 and CD8 gene-targeted mice to investigate the role of CD4+ and CD8+ T cells in the regulation of gut mucosal immune responses following oral immunizations with cholera toxin (CT) adjuvant. Phenotypic analysis of mucosa-associated tissues revealed normal CD3+ T-cell frequencies in CD4-/- and CD8-/- mice such that in CD4-/- mice the CD8+ and double-negative (DN) T cells were increased. In CD8-/- mice the CD4+ T cells were increased, with the exception that in the intraepithelial compartment the CD3+ T cells were predominantly DN gamma delta T-cell receptor (TCR)+ T cells. All mice, normal and deficient, failed to respond to oral immunization with the antigen, keyhole limpet haemocyanin (KLH), alone. In the presence of CT adjuvant, however, CD8-/- mice consistently exhibited three- to fivefold stronger gut mucosal responses compared to normal C57B1/6 mice. By contrast, no difference was observed for systemic responses between CD8-/- and normal mice. Thus the up-regulation selectively affected mucosal responses, suggesting that, contrary to the CD8-/- mouse gut, the normal gut mucosa may host CD8+ T cells that exert a local suppressive effect on T- and B-cell responses. The magnitude of the enhancing effect of CT was comparable in CD8-/- and normal mice, clearly demonstrating that the adjuvant mechanism of CT does not require CD8+ T cells. On the other hand, the adjuvant effect of CT required CD4+ T cells, because no or poor anti-KLH responses were observed in CD4-/- mice. In both normal and CD8-/- mice CT adjuvant promoted KLH-specific CD4+ T-cell printing without any selective effect on the differentiation towards a T-helper type-1 (Th1) or Th2 dominance. Furthermore, CT adjuvant increased the frequency of CD4+ T cells expressing a memory phenotype, i.e. CD44high, LECAM-1low and CD45RBlow. We have shown, using gene-targeted mice, that CD8+ T cells are not required for the adjuvant effect of CT, and that CD8+ T cells may exert local mucosal down-regulation of intestinal immune responses.  相似文献   

18.
Two subsets of murine splenic dendritic cells, derived from distinct precursors, can be distinguished by surface expression of CD8alpha homodimers. The functions of the two subsets remain controversial, although it has been suggested that the lymphoid-derived (CD8alpha+) subset induces tolerance, whereas the myeloid-derived (CD8alpha-) subset has been shown to prime naive T cells and to generate memory responses. To study their capacity to prime or tolerize naive CD4(+) T cells in vivo, purified CD8alpha+ or CD8alpha- dendritic cells were injected subcutaneously into normal mice. In contrast to CD8alpha- dendritic cells, the CD8alpha+ fraction failed to traffic to the draining lymph node and did not generate responses to intravenous peptide. However, after in vitro pulsing with peptide, strong in vivo T cell responses to purified CD8alpha+ dendritic cells could be detected. Such responses may have been initiated via transfer of peptide-major histocompatibility complex complexes to migratory host CD8alpha- dendritic cells after injection. These data suggest that correlation of T helper cell type 1 (Th1) and Th2 priming with injection of CD8alpha+ and CD8alpha- dendritic cells, respectively, may not result from direct T cell activation by lymphoid versus myeloid dendritic cells, but rather from indirect modification of the response to immunogenic CD8alpha- dendritic cells by CD8alpha+ dendritic cells.  相似文献   

19.
Nonobese diabetic (NOD) mice develop spontaneous insulin-dependent diabetes mellitus (IDDM), and the pancreas-infiltrating T cells invariably show a Th1 phenotype. We demonstrated here that the interleukin (IL)-12 antagonist (p40)2 can deviate the default Th1 development of naive T cell receptor (TCR)-transgenic CD4+ cells to the Th2 pathway in vitro. Although (p40)2 does not modify the cytokine profile of polarized Th1 cells, it prevents further recruitment of CD4- cells into the Th1 subset. To study the involvement of Th1 and Th2 cells in the initiation and progression of IDDM, we targeted endogenous IL-12 by administration of (p40)2 in NOD mice. (p40)2 administration to NOD mice inhibits interferon-gamma but not IL-10 production in response to lipopolysaccharide (LPS) or to the putative autoantigen IA-2. Serum immunoglobulin isotypes determined after (p40)2 treatment indicate an increase in Th2 and a decrease in Th1 helper activity. Administration of (p40)2 from 3 weeks of age onwards, before the onset of insulitis, results in the deviation of pancreas-infiltrating CD4+ but not CD8+ cells to the Th2 phenotype as well as in the reduction of spontaneous and cyclophosphamide-accelerated IDDM. After treating NOD mice with (p40)2 from 9 weeks of age, when insulitis is well established, few Th2 and a reduced percentage of Th1 cells are found in the pancreas. This is associated with a slightly decreased incidence of spontaneous IDDM, but no protection from cyclophosphamide-accelerated IDDM. In conclusion, deviation of pancreas-infiltrating CD4+ cells to Th2 is associated with protection from IDDM. However, targeting IL-12 after the onset of insulitis, when the pancreas contains polarized Th1 cells, is not sufficient to induce an effective immune deviation able to significantly modify the course of disease.  相似文献   

20.
Severe combined immunodeficient (scid) mice engrafted with small pieces of full thickness gut wall from immunocompetent syngenic donors develop a chronic and lethal colitis. Lymphocytes from the lamina propria of engrafted mice were analyzed for phorbol ester/ionomycin-induced cytokine production by intracellular staining. A 4-5-fold increase in the fraction of IFN-gamma-producing CD4+ lamina propria T cells was found in moderately and severely diseased mice when compared to healthy congenic C.B-17 control mice. The number of IL-2-producing T cells was increased by approximately 2-fold when comparing mice suffering from severe disease to healthy control mice. The fraction of TNF-alpha positive CD4+ T cells was increased by a factor of two in both moderately and severely diseased mice. When analyzing Th2 cytokines, it was found that the levels of IL-4-producing CD4+ T cells was not altered in diseased animals, whereas the fraction IL-10-producing CD4+ T cells was reduced by a factor of 20. The combined data showed a 15-25-fold increase in the Th1/Th2 ratio of diseased mice when compared to healthy control mice. No intracellular cytokines could be detected in lymphocytes not treated with phorbol ester/ionomycin. The present data identify a prominent role for Th1-type T helper cells in the immunopathogenesis of gut wall graft-induced inflammatory bowel disease in scid mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号