首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Severe periodontitis is prevalent in Down syndrome (DS). This study aimed to identify genetic variations associated with periodontitis in individuals with DS. The study group was distributed into DS patients with periodontitis (n = 50) and DS patients with healthy periodontium (n = 36). All samples were genotyped with the “Axiom Spanish Biobank” array, which contains 757,836 markers. An association analysis at the individual marker level using logistic regression, as well as at the gene level applying the sequence kernel association test (SKAT) was performed. The most significant genes were included in a pathway analysis using the free DAVID software. C12orf74 (rs4315121, p = 9.85 × 10−5, OR = 8.84), LOC101930064 (rs4814890, p = 9.61 × 10−5, OR = 0.13), KBTBD12 (rs1549874, p = 8.27 × 10−5, OR = 0.08), PIWIL1 (rs11060842, p = 7.82 × 10−5, OR = 9.05) and C16orf82 (rs62030877, p = 8.92 × 10−5, OR = 0.14) showed a higher probability in the individual analysis. The analysis at the gene level highlighted PIWIL, MIR9-2, LHCGR, TPR and BCR. At the signaling pathway level, PI3K-Akt, long-term depression and FoxO achieved nominal significance (p = 1.3 × 10−2, p = 5.1 × 10−3, p = 1.2 × 10−2, respectively). In summary, various metabolic pathways are involved in the pathogenesis of periodontitis in DS, including PI3K-Akt, which regulates cell proliferation and inflammatory response.  相似文献   

2.
Recent genome-wide association studies identified single nucleotide polymorphisms (SNPs) on the chromosome 9p21.3 conferring the risk for CAD (coronary artery disease) in individuals of Caucasian ancestry. We performed a genetic association study to investigate the effect of 12 candidate SNPs within 9p21.3 locus on the risk of CAD in the Saudi population of the Eastern Province of Saudi Arabia. A total of 250 Saudi CAD patients who had experienced an myocardial infarction (MI) and 252 Saudi age-matched healthy controls were genotyped using TaqMan assay. Controls with evidenced lack of CAD provided 90% of statistical power at the type I error rate of 0.05. Five percent of the results were rechecked for quality control using Sanger sequencing, the results of which concurred with the TaqMan genotyping results. Association analysis of 12 SNPs indicated a significant difference in the genotype distribution for four SNPs between cases and controls (rs564398 p = 0.0315, χ2 = 4.6, odds ratio (OD) = 1.5; rs4977574 p = 0.0336, χ2 = 4.5, OD = 1.4; rs2891168 p = 1.85 × 10 − 10, χ2 = 40.6, OD = 2.1 and rs1333042 p = 5.14 × 10 − 9, χ2 = 34.1, OD = 2.2). The study identified three protective haplotypes (TAAG p = 1.00 × 10 − 4; AGTA p = 0.022 and GGGCC p = 0.0175) and a risk haplotype (TGGA p = 2.86 × 10 − 10) for the development of CAD. This study is in line with others that indicated that the SNPs located in the intronic region of the CDKN2B-AS1 gene are associated with CAD.  相似文献   

3.
Working memory deficit is the core neurocognitive disorder in schizophrenia patients. To identify the factors underlying working memory deficit in schizophrenia patients and to explore the implication of possible genes in the working memory using genome-wide association study (GWAS) of schizophrenia, computerized delay-matching-to-sample (DMS) and whole genome genotyping data were obtained from 100 first-episode, treatment-naïve patients with schizophrenia and 140 healthy controls from the Mental Health Centre of the West China Hospital, Sichuan University. A composite score, delay-matching-to-sample total correct numbers (DMS-TC), was found to be significantly different between the patients and control. On associating quantitative DMS-TC with interactive variables of groups × genotype, one SNP (rs1411832), located downstream of YWHAZP5 in chromosome 10, was found to be associated with the working memory deficit in schizophrenia patients with lowest p-value (p = 2.02 × 10−7). ConsensusPathDB identified that genes with SNPs for which p values below the threshold of 5 × 10−5 were significantly enriched in GO:0007155 (cell adhesion, p < 0.001). This study indicates that working memory, as an endophenotype of schizophrenia, could improve the efficacy of GWAS in schizophrenia. However, further study is required to replicate the results from our study.  相似文献   

4.
Large-scale genome-wide association studies (GWAS) have revealed that rs10757278 polymorphism (or its proxy rs1333049) on chromosome 9p21 is associated with myocardial infarction (MI) susceptibility in individuals of Caucasian ancestry. Following studies in other populations investigated this association. However, some of these studies reported weak or no significant association. Here, we reevaluated this association using large-scale samples by searching PubMed and Google Scholar databases. Our results showed significant association between rs10757278 polymorphism and MI with p = 6.09 × 10−22, odds ratio (OR) = 1.29, 95% confidence interval (CI) 1.22–1.36 in pooled population. We further performed a subgroup analysis, and found significant association between rs10757278 polymorphism and MI in Asian and Caucasian populations. We identified that the association between rs10757278 polymorphism and MI did not vary substantially by excluding any one study. However, the heterogeneity among the selected studies varies substantially by excluding the study from the Pakistan population. We found even more significant association between rs10757278 polymorphism and MI in pooled population, p = 3.55 × 10−53, after excluding the study from the Pakistan population. In summary, previous studies reported weak or no significant association between rs10757278 polymorphism and MI. Interestingly, our analysis suggests that rs10757278 polymorphism is significantly associated with MI susceptibility by analyzing large-scale samples.  相似文献   

5.
Gastric cancer has remained in the top five cancers for over ten years, both in terms of incidence and mortality due to the shortage of biomarkers for disease follow-up and effective therapies. Aiming to fill this gap, we performed a bioinformatics assessment on our data and two additional GEO microarray profiles, followed by a deep analysis of the 40 differentially expressed genes identified. PPI network analysis and MCODE plug-in pointed out nine upregulated hub genes coding for proteins from the collagen family (COL12A1, COL5A2, and COL10A1) or involved in the assembly (BGN) or degradation of collagens (CTHRC1), and also associated with cell adhesion (THBS2 and SPP1) and extracellular matrix degradation (FAP, SULF1). Those genes were highly upregulated at the mRNA and protein level, the increase being correlated with pathological T stages. The high expression of BGN (p = 8 × 10−12), THBS2 (p = 1.2 × 10−6), CTHRC1 (p = 1.1 × 10−4), SULF1 (p = 3.8 × 10−4), COL5A1 (p = 1.3 × 10−4), COL10A1 (p = 5.7 × 10−4), COL12A1 (p = 2 × 10−3) correlated with poor overall survival and an immune infiltrate based especially on immunosuppressive M2 macrophages (p-value range 4.82 × 10−7–1.63 × 10−13). Our results emphasize that these genes could be candidate biomarkers for GC progression and prognosis and new therapeutic targets.  相似文献   

6.
Longevity is a complex phenotype influenced by both environmental and genetic factors. The genetic contribution is estimated at about 25%. Despite extensive research efforts, only a few longevity genes have been validated across populations. Long-lived individuals (LLI) reach extreme ages with a relative low prevalence of chronic disability and major age-related diseases (ARDs). We tested whether the protection from ARDs in LLI can partly be attributed to genetic factors by calculating polygenic risk scores (PRSs) for seven common late-life diseases (Alzheimer’s disease (AD), atrial fibrillation (AF), coronary artery disease (CAD), colorectal cancer (CRC), ischemic stroke (ISS), Parkinson’s disease (PD) and type 2 diabetes (T2D)). The examined sample comprised 1351 German LLI (≥94 years, including 643 centenarians) and 4680 German younger controls. For all ARD-PRSs tested, the LLI had significantly lower scores than the younger control individuals (areas under the curve (AUCs): ISS = 0.59, p = 2.84 × 10−35; AD = 0.59, p = 3.16 × 10−25; AF = 0.57, p = 1.07 × 10−16; CAD = 0.56, p = 1.88 × 10−12; CRC = 0.52, p = 5.85 × 10−3; PD = 0.52, p = 1.91 × 10−3; T2D = 0.51, p = 2.61 × 10−3). We combined the individual ARD-PRSs into a meta-PRS (AUC = 0.64, p = 6.45 × 10−15). We also generated two genome-wide polygenic scores for longevity, one with and one without the TOMM40/APOE/APOC1 gene region (AUC (incl. TOMM40/APOE/APOC1) = 0.56, p = 1.45 × 10−5, seven variants; AUC (excl. TOMM40/APOE/APOC1) = 0.55, p = 9.85 × 10−3, 10,361 variants). Furthermore, the inclusion of nine markers from the excluded region (not in LD with each other) plus the APOE haplotype into the model raised the AUC from 0.55 to 0.61. Thus, our results highlight the importance of TOMM40/APOE/APOC1 as a longevity hub.  相似文献   

7.
Brain-Derived Neurotrophic Factor (BDNF) and its rs6265 single nucleotide polymorphism (SNP) play an important role in post-stroke recovery. We investigated the correlation between BDNF rs6265 SNP and recovery outcome, measured by the modified Barthel index, in 49 patients with stroke hospitalized in our rehabilitation center at baseline (T0) and after 30 sessions of rehabilitation treatment (T1); moreover, we analyzed the methylation level of the CpG site created or abolished into BDNF rs6265 SNP. In total, 11 patients (22.4%) were heterozygous GA, and 32 (65.3%) and 6 (12.2%) patients were homozygous GG and AA, respectively. The univariate analysis showed a significant relationship between the BDNF rs6265 SNP and the modified Barthel index cut-off (χ2(1, N = 48) = 3.86, p = 0.049), considering patients divided for carrying (A+) or not carrying (A−) the A allele. A higher percentage of A− patients obtained a favorable outcome, as showed by the logistic regression model corrected by age and time since the stroke onset, compared with the A+ patients (OR: 5.59). At baseline (T0), the percentage of BDNF methylation was significantly different between GG (44.6 ± 1.1%), GA (39.5 ± 2.8%) and AA (28.5 ± 1.7%) alleles (p < 0.001). After rehabilitation (T1), only patients A− showed a significant increase in methylation percentages (mean change = 1.3, CI: 0.4–2.2, p = 0.007). This preliminary study deserves more investigation to confirm if BDNF rs6265 SNP and its methylation could be used as a biological marker of recovery in patients with stroke undergoing rehabilitation treatment.  相似文献   

8.
Both age-dependent and age-independent alteration of DNA methylation in human tissues are functionally associated with the development of many malignant and non-malignant human diseases. TCGA-KIRC data were biometrically analyzed to identify new loci with age-dependent DNA methylation that may contribute to tumor risk in normal kidney tissue. ANKRD34B and ZIC1 were evaluated as candidate genes by pyrosequencing of 539 tissues, including 239 normal autopsy, 157 histopathologically tumor-adjacent normal, and 143 paired tumor kidney samples. All candidate CpG loci demonstrated a strong correlation between relative methylation levels and age (R = 0.70–0.88, p < 2 × 10−16) and seven out of 10 loci were capable of predicting chronological age in normal kidney tissues, explaining 84% of the variance (R = 0.92). Moreover, significantly increased age-independent methylation was found for 9 out of 10 CpG loci in tumor-adjacent tissues, compared to normal autopsy tissues (p = 0.001–0.028). Comparing tumor and paired tumor-adjacent tissues revealed two patient clusters showing hypermethylation, one cluster without significant changes in methylation, and a smaller cluster demonstrating hypomethylation in the tumors (p < 1 × 10−10). Taken together, our results show the presence of additional methylation risk factors besides age for renal cancer in normal kidney tissue. Concurrent tumor-specific hypermethylation suggests a subset of these loci are candidates for epigenetic renal cancer susceptibility.  相似文献   

9.
Small vessel strokes (SVS) and intracerebral haemorrhages (ICH) are acute outcomes of cerebral small vessel disease (SVD). Genetic studies combining both phenotypes have identified three loci associated with both traits. However, the genetic cis-regulation at the protein level associated with SVD has not been studied before. We performed a proteome-wide association study (PWAS) using FUSION to integrate a genome-wide association study (GWAS) and brain proteomic data to discover the common mechanisms regulating both SVS and ICH. Dorsolateral prefrontal cortex (dPFC) brain proteomes from the ROS/MAP study (N = 376 subjects and 1443 proteins) and the summary statistics for the SVS GWAS from the MEGASTROKE study (N = 237,511) and multi-trait analysis of GWAS (MTAG)-ICH–SVS from Chung et al. (N = 240,269) were selected. We performed PWAS and then a co-localization analysis with COLOC. The significant and nominal results were validated using a replication dPFC proteome (N = 152). The replicated results (q-value < 0.05) were further investigated for the causality relationship using summary data-based Mendelian randomization (SMR). One protein (ICA1L) was significantly associated with SVS (z-score = −4.42 and p-value = 9.6 × 10−6) and non-lobar ICH (z-score = −4.8 and p-value = 1.58 × 10−6) in the discovery PWAS, with a high co-localization posterior probability of 4. In the validation PWAS, ICA1L remained significantly associated with both traits. The SMR results for ICA1L indicated a causal association of protein expression levels in the brain with SVS (p-value = 3.66 × 10−5) and non-lobar ICH (p-value = 1.81 × 10−5). Our results show that the association of ICA1L with SVS and non-lobar ICH is conditioned by the cis-regulation of its protein levels in the brain.  相似文献   

10.
Immunosuppressants and biologicals are widely used therapeutics for various chronic inflammatory diseases (CID). To gain more detailed insight into their downstream effects, we examined their impact on serum immunoglobulin G (IgG) glycosylation. We analyzed IgG subclass-specific fragment crystallizable (Fc) N-glycosylation in patients suffering from various CID using the LC-MS approach. Firstly, we compared IgG Fc N-glycosylation between 128 CID patients and 204 healthy controls. Our results replicated previously observed CID-related decrease in IgG Fc galactosylation (adjusted p-value range 1.70 × 10−2–5.95 × 10−22) and sialylation (adjusted p-value range 1.85 × 10−2–1.71 × 10−18). Secondly, to assess changes in IgG Fc N-glycosylation associated with therapy and remission status, we compared 139 CID patients receiving either azathioprine, infliximab, or vedolizumab therapy. We observed an increase in IgG Fc galactosylation (adjusted p-value range 1.98 × 10−2–1.30 × 10−15) and sialylation (adjusted p-value range 3.28 × 10−6–4.34 × 10−18) during the treatment. Furthermore, patients who reached remission displayed increased Fc galactosylation levels (p-value range 2.25 × 10−2–5.44 × 10−3) in comparison to patients with active disease. In conclusion, the alterations in IgG Fc glycosylation and the fact these changes are even more pronounced in patients who achieved remission, suggest modulation of IgG inflammatory potential associated with CID therapy.  相似文献   

11.
12.
13.
YKL-40, a pleotropic cytokine, is emerging as a risk factor and a prognostic predictor of atherosclerotic cardiovascular disease. We attempted to elucidate the genetic, clinical and biochemical correlates of circulating YKL-40 level and, by combining it with CHI3L1 gene variants, with the risk and long-term mortality of peripheral artery disease (PAD). Plasma YKL-40 concentrations were measured in 612 Taiwanese individuals who had no clinically overt systemic disease. Clinical parameters, CHI3L1 gene promoter variants and 18 biomarker levels were analyzed. Eighty-six PAD patients were further enrolled for analysis. Significant associations were found between CHI3L1 genotypes/haplotypes and YKL-40 levels for the health examination subjects (smallest p = 8.36 × 10−7 for rs4950928 and smallest p = 1.72 × 10−10 for haplotype TGG) and also for PAD patients. For the health examination subjects, circulating YKL-40 level, but not CHI3L1 gene variants, were positively associated with age, smoking, and circulating levels of triglyceride, lipocalin 2 and multiple inflammatory biomarkers and negatively associated with low-density-lipoprotein cholesterol levels. Circulating YKL-40 level is also significantly associated with the risk of PAD (p = 3.3 × 10−23). Circulating YKL40 level, but not CHI3L1 gene promoter variants, is associated with the risk of PAD in Taiwanese. The association of YKL-40 levels with multiple quantitative traits relating to the risk of PAD may provide a molecular basis linking YKL-40 to atherosclerotic cardiovascular disease.  相似文献   

14.
15.
During tubo-ovarian high-grade serous carcinoma (HGSC) progression, tumoral cells undergo phenotypic changes in their epithelial marker profiles, which are essential for dissemination processes. Here, we set out to determine whether standard epithelial markers can predict HGSC patient prognosis. Levels of E-CADH, KRT7, KRT18, KRT19 were quantified in 18 HGSC cell lines by Western blot and in a Discovery cohort tissue microarray (TMA) (n = 101 patients) using immunofluorescence. E-CADH and KRT7 levels were subsequently analyzed in the TMA of the Canadian Ovarian Experimental Unified Resource cohort (COEUR, n = 1158 patients) and in public datasets. Epithelial marker expression was highly variable in HGSC cell lines and tissues. In the Discovery cohort, high levels of KRT7 and KRT19 were associated with an unfavorable prognosis, whereas high E-CADH expression indicated a better outcome. Expression of KRT7 and E-CADH gave a robust combination to predict overall survival (OS, p = 0.004) and progression free survival (PFS, p = 5.5 × 10−4) by Kaplan–Meier analysis. In the COEUR cohort, the E-CADH-KRT7 signature was a strong independent prognostic biomarker (OS, HR = 1.6, p = 2.9 × 10−4; PFS, HR = 1.3, p = 0.008) and predicted a poor patient response to chemotherapy (p = 1.3 × 10−4). Our results identify a combination of two epithelial markers as highly significant indicators of HGSC patient prognosis and treatment response.  相似文献   

16.
17.
18.
Psoriasis is a chronic inflammatory condition associated with atherosclerotic cardiovascular disease (CVD). Systemic anti-psoriatic treatments mainly include methotrexate and biological therapies targeting TNF, IL-12/23 and IL-17A. We profiled plasma proteins from patients with moderate-to-severe psoriasis to explore potential biomarkers of effective systemic treatment and their relationship to CVD. We found that systemically well-treated patients (PASI < 3.0, n = 36) had lower circulating levels of IL-17 pathway proteins compared to untreated patients (PASI > 10, n = 23). Notably, IL-17C and PI3 were decreased with all four examined systemic treatment types. Furthermore, in patients without CVD, we observed strong correlations among IL-17C/PI3/PASI (r ≥ 0.82, p ≤ 1.5 × 10−12) pairs or between IL-17A/PASI (r = 0.72, p = 9.3 × 10−8). In patients with CVD, the IL-17A/PASI correlation was abolished (r = 0.2, p = 0.24) and the other correlations were decreased, e.g., IL-17C/PI3 (r = 0.61, p = 4.5 × 10−5). Patients with moderate-to-severe psoriasis and CVD had lower levels of IL-17A compared to those without CVD (normalized protein expression [NPX] 2.02 vs. 2.55, p = 0.013), and lower IL-17A levels (NPX < 2.3) were associated with higher incidence of CVD (OR = 24.5, p = 0.0028, 95% CI 2.1–1425.1). As a result, in patients with moderate-to-severe psoriasis, we propose circulating IL-17C and PI3 as potential biomarkers of effective systemic anti-psoriatic treatment, and IL-17A as potential marker of CVD.  相似文献   

19.
Longevity is a unique human phenomenon and a highly stable trait, characterized by polygenicity. The longevity phenotype occurs due to the ability to successfully withstand the age-related genomic instability triggered by Alu elements. The purpose of our cross-sectional study was to evaluate the combined contribution of ACE*Ya5ACE, CDH4*Yb8NBC516, COL13A1*Ya5ac1986, HECW1*Ya5NBC182, LAMA2*Ya5-MLS19, PLAT*TPA25, PKHD1L1*Yb8AC702, SEMA6A*Yb8NBC597, STK38L*Ya5ac2145 and TEAD1*Ya5ac2013 Alu elements to longevity. The study group included 2054 unrelated individuals aged from 18 to 113 years who are ethnic Tatars from Russia. We analyzed the dynamics of the allele and genotype frequencies of the studied Alu polymorphic loci in the age groups of young (18–44 years old), middle-aged (45–59 years old), elderly (60–74 years old), old seniors (75–89 years old) and long-livers (90–113 years old). Most significant changes in allele and genotype frequencies were observed between the long-livers and other groups. The search for polygenic predictors of longevity was performed using the APSampler program. Attaining longevity was associated with the combinations LAMA2*ID + CDH4*D (OR = 2.23, PBonf = 1.90 × 10−2) and CDH4*DD + LAMA2*ID + HECW1*D (OR = 4.58, PBonf = 9.00 × 10−3) among persons aged between 18 and 89 years, LAMA2*ID + CDH4*D + SEMA6A*I for individuals below 75 years of age (OR = 3.13, PBonf = 2.00 × 10−2), LAMA2*ID + HECW1*I for elderly people aged 60 and older (OR = 3.13, PBonf = 2.00 × 10−2) and CDH4*DD + LAMA2*D + HECW1*D (OR = 4.21, PBonf = 2.60 × 10−2) and CDH4*DD + LAMA2*D + ACE*I (OR = 3.68, PBonf = 1.90 × 10−2) among old seniors (75–89 years old). The key elements of combinations associated with longevity were the deletion alleles of CDH4 and LAMA2 genes. Our results point to the significance for human longevity of the Alu polymorphic loci in CDH4, LAMA2, HECW1, SEMA6A and ACE genes, involved in the integration systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号