首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prevalence of type 2 diabetes (T2D) is rapidly increasing across the globe. Fetal exposure to maternal diabetes was correlated with higher prevalence of impaired glucose tolerance and T2D later in life. Previous studies showed aberrant DNA methylation patterns in pancreas of T2D patients. However, the underlying mechanisms remained largely unknown. We utilized human embryonic stem cells (hESC) as the in vitro model for studying the effects of hyperglycemia on DNA methylome and early pancreatic differentiation. Culture in hyperglycemic conditions disturbed the pancreatic lineage potential of hESC, leading to the downregulation of expression of pancreatic markers PDX1, NKX6−1 and NKX6−2 after in vitro differentiation. Genome-wide DNA methylome profiling revealed over 2000 differentially methylated CpG sites in hESC cultured in hyperglycemic condition when compared with those in control glucose condition. Gene ontology analysis also revealed that the hypermethylated genes were enriched in cell fate commitment. Among them, NKX6−2 was validated and its hypermethylation status was maintained upon differentiation into pancreatic progenitor cells. We also established mouse ESC lines at both physiological glucose level (PG-mESC) and conventional hyperglycemia glucose level (HG-mESC). Concordantly, DNA methylome analysis revealed the enrichment of hypermethylated genes related to cell differentiation in HG-mESC, including Nkx6−1. Our results suggested that hyperglycemia dysregulated the epigenome at early fetal development, possibly leading to impaired pancreatic development.  相似文献   

2.
3.
4.
5.
6.
Epigenetics is one of the mechanisms by which environmental factors can alter brain function and may contribute to central nervous system disorders. Alterations of DNA methylation and miRNA expression can induce long-lasting changes in neurobiological processes. Hence, we investigated the effect of chronic stress, by employing the chronic mild stress (CMS) and the chronic restraint stress protocol, in adult male rats, on the glucocorticoid receptor (GR) function. We focused on DNA methylation specifically in the proximity of the glucocorticoid responsive element (GRE) of the GR responsive genes Gadd45β, Sgk1, and Gilz and on selected miRNA targeting these genes. Moreover, we assessed the role of the antipsychotic lurasidone in modulating these alterations. Chronic stress downregulated Gadd45β and Gilz gene expression and lurasidone normalized the Gadd45β modification. At the epigenetic level, CMS induced hypermethylation of the GRE of Gadd45β gene, an effect prevented by lurasidone treatment. These stress-induced alterations were still present even after a period of rest from stress, indicating the enduring nature of such changes. However, the contribution of miRNA to the alterations in gene expression was moderate in our experimental conditions. Our results demonstrated that chronic stress mainly affects Gadd45β expression and methylation, effects that are prolonged over time, suggesting that stress leads to changes in DNA methylation that last also after the cessation of stress procedure, and that lurasidone is a modifier of such mechanisms.  相似文献   

7.
8.
9.
High-risk human papillomaviruses (HPV) are important agents, responsible for a large percentage of the 745,000 cases of head and neck squamous cell carcinomas (HNSCC), which were identified worldwide in 2020. In addition to being virally induced, tobacco and heavy alcohol consumption are believed to cause DNA damage contributing to the high number of HNSCC cases. Gene expression and DNA methylation differ between HNSCC based on HPV status. We used publicly available gene expression and DNA methylation profiles from the Cancer Genome Atlas and compared HPV positive and HPV negative HNSCC groups. We used differential gene expression analysis, differential methylation analysis, and a combination of these two analyses to identify the differences. Differential expression analysis identified 1854 differentially expressed genes, including PCNA, TNFRSF14, TRAF1, TRAF2, BCL2, and BIRC3. SYCP2 was identified as one of the top deregulated genes in the differential methylation analysis and in the combined differential expression and methylation analyses. Additionally, pathway and ontology analyses identified the extracellular matrix and receptor interaction pathway as the most altered between HPV negative and HPV positive HNSCC groups. Combining gene expression and DNA methylation can help in elucidating the genes involved in HPV positive HNSCC tumorigenesis, such as SYCP2 and TAF7L.  相似文献   

10.
11.
12.
Prediction of endoscopic post-operative recurrence (POR) in Crohn’s disease (CD) patients following ileocolonic resection (ICR) using clinical risk factors alone has thus far been inadequate. While peripheral blood leukocyte (PBL) DNA methylation has shown promise as a tool for predicting recurrence in cancer, no data in CD patients exists. Therefore, this study explored the association and predictive value of PBL DNA methylation in CD patients following ICR. From a cohort of 117 CD patients undergoing ICR, epigenome-wide PBL methylation profiles from 25 carefully selected patients presenting either clear endoscopic remission (n = 12) or severe recurrence (n = 13) were assessed using the Illumina MethylationEPIC (850K) array. No statistically significant differentially methylated positions (DMPs) or regions (DMRs) associated with endoscopic POR were identified (FDR p ≤ 0.05), further evidenced by the low accuracy (0.625) following elastic net classification analysis. Nonetheless, interrogating the most significant differences in methylation suggested POR-associated hypermethylation in the MBNL1, RAB29 and LEPR genes, respectively, which are involved in intestinal fibrosis, inflammation and wound healing. Notably, we observed a higher estimated proportion of monocytes in endoscopic POR compared to remission. Altogether, we observed limited differences in the genome-wide DNA methylome among CD patients with and without endoscopic POR. We therefore conclude that PBL DNA methylation is not a feasible predictive tool in post-operative CD.  相似文献   

13.
We analyzed whole-genome bisulfite sequencing (WGBS) and RNA sequencing data of two young (1 year old) and two adult (9 years old) rhesus macaques (Macaca mulatta) to characterize the genomic DNA methylation profile of the thymus and explore the molecular mechanism of age-related changes in the thymus. Combining the two-omics data, we identified correlations between DNA methylation and gene expression and found that DNA methylation played an essential role in the functional changes of the aging thymus, especially in immunity and coagulation. The hypomethylation levels of C3 and C5AR2 and the hypermethylation level of C7 may lead to the high expressions of these genes in adult rhesus macaque thymuses, thus activating the classical complement pathway and the alternative pathway and enhancing their innate immune function. Adult thymuses had an enhanced coagulation pathway, which may have resulted from the hypomethylation and upregulated expressions of seven coagulation-promoting factor genes (F13A1, CLEC4D, CLEC4E, FCN3, PDGFRA, FGF2 and FGF7) and the hypomethylation and low expression of CPB2 to inhibit the degradation of blood clots. Furthermore, the functional decline in differentiation, activation and maturation of T cells in adult thymuses was also closely related to the changes in methylation levels and gene expression levels of T cell development genes (CD3G, GAD2, ADAMDEC1 and LCK) and the thymogenic hormone gene TMPO. A comparison of the age-related methylated genes among four mammal species revealed that most of the epigenetic clocks were species-specific. Furthermore, based on the genomic landscape of allele-specific DNA methylation, we identified several age-related clustered sequence-dependent allele-specific DNA methylated (cS-ASM) genes. Overall, these DNA methylation patterns may also help to assist with understanding the mechanisms of the aging thymus with the epigenome.  相似文献   

14.
The KMT2A/AFF1 rearrangement is associated with an unfavorable prognosis in infant acute lymphocytic leukemia (ALL). Discordant ALL in monozygotic twins is uncommon and represents an attractive resource to evaluate intrauterine environment–genetic interplay in ALL. Mutational and epigenetic profiles were characterized for a discordant KMT2A/AFF1-rearranged infant monozygotic twin pair and their parents, and they were compared to three independent KMT2A/AFF1-positive ALL infants, in which the DNA methylation and gene expression profiles were investigated. A de novo Q61H NRAS mutation was detected in the affected twin at diagnosis and backtracked in both twins at birth. The KMT2A/AFF1 rearrangement was absent at birth in both twins. Genetic analyses conducted at birth gave more insights into the timing of the mutation hit. We identified correlations between DNA methylation and gene expression changes for 32 genes in the three independent affected versus remitted patients. The strongest correlations were observed for the RAB32, PDK4, CXCL3, RANBP17, and MACROD2 genes. This epigenetic signature could be a putative target for the development of novel epigenetic-based therapies and could help in explaining the molecular mechanisms characterizing ALL infants with KMT2A/AFF1 fusions.  相似文献   

15.
ESR1 methylation was proposed as mechanism for endocrine resistance in metastatic breast cancer patients. To evaluate its potential as a minimally invasive biomarker, we investigated the feasibility of measuring ESR1 methylation in cell-free DNA (cfDNA) and its association with endocrine resistance. First, we provided evidence that demethylation in vitro restores ER expression. Subsequently, we found that ESR1 methylation in cfDNA was not enriched in endocrine-resistant versus endocrine-sensitive patients. Interestingly, we found a correlation between ESR1 methylation and age. Publicly available data confirm an age-related increase in ESR1 methylation in leukocytes, confounding the determination of the ESR1 methylation status of tumors using cfDNA.  相似文献   

16.
It is widely accepted that sandblasted/large-grit/acid-etched (SLA) surfaces of titanium (Ti) have a higher osteogenic potential than machined ones. However, most studies focused on differential gene expression without elucidating the underlying mechanism for this difference. The aim of this study was to evaluate how the surface roughness of dental Ti implants affects their osteogenic potential. Mouse preosteoblast MC3T3-E1 cells were seeded on machined and SLA Ti discs. The cellular activities of the discs were analyzed using confocal laser scanning microscopy, proliferation assays, and real-time polymerase chain reaction (PCR). DNA methylation was evaluated using a methylation-specific PCR. The cell morphology was slightly different between the two types of surfaces. While cellular proliferation was slightly greater on the machined surfaces, the osteogenic response of the SLA surfaces was superior, and they showed increased alkaline phosphatase (Alp) activity and higher bone marker gene expression levels (Type I collagen, Alp, and osteocalcin). The degree of DNA methylation on the Alp gene was lower on the SLA surfaces than on the machined surfaces. DNA methyltransferase inhibitor stimulated the Alp gene expression on the machined surfaces, similar to the SLA surfaces. The superior osteogenic potential of the SLA surfaces can be attributed to a different epigenetic landscape, specifically, the DNA methylation of Alp genes. This finding offers novel insights into epigenetics to supplement genetics and raises the possibility of using epidrugs as potential therapeutic targets to enhance osteogenesis on implant surfaces.  相似文献   

17.
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development.  相似文献   

18.
It has been proposed that carbon monoxide (CO) is a chemical light carrier that is transferred by the humoral pathway from the retina to the brain. Here, we aimed to study how deeply CO is involved in regulating the expression of Period2 gene (PER2), one of the genes maintaining the intrinsic biological clock. In our in vivo experiment, we studied whether CO may be a chemical signal and is also equivalent to natural light in three groups of pigs: Normal: housed in natural conditions without any procedures, Control: adapted and kept in constant darkness, infused with blank plasma, and CO treated: adapted and kept in constant darkness infused with CO-enriched plasma. After the experiment, the animals were slaughtered at two times of day: 12 p.m. and 12 a.m. Next, hypothalamus samples were collected. Quantitative PCR, the DNA methylation of the promoter sequence containing enhancers (E-box) and a functional analysis of the PER2 promoter was performed. qPCR showed a differential pattern of PER2 mRNA expression at daytime oscillation in the examined groups. Pyrosequencing revealed daytime changes in the methylation level of regulatory sites of the examined sequence. Luciferase reporter assay confirmed that E-boxes (CANNTG) drive the expression of the porcine PER2 in vitro. In conclusion, changes in methylation over 24 h may regulate the oscillatory manner of PER2 expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号