首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate. Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways.  相似文献   

2.
Mouse embryonic stem cells (ESCs) are useful tools for studying early embryonic development and tissue formation in mammals. Since neural lineage differentiation is a major subject of organogenesis, the development of efficient techniques to induce neural stem cells (NSCs) from pluripotent stem cells must be preceded. However, the currently available NSC differentiation methods are complicated and time consuming. This study aimed to propose an efficient method for the derivation of NSCs from mouse ESCs; early neural lineage commitment was achieved using a three-dimensional (3D) culture system, followed by a two-dimensional (2D) NSC derivation. To select early neural lineage cell types during differentiation, Sox1-GFP transgenic ESCs were used. They were differentiated into early neural lineage, forming spherical aggregates, which were subsequently picked for the establishment of 2D NSCs. The latter showed a morphology similar to that of brain-derived NSCs and expressed NSC markers, Musashi, Nestin, N-cadherin, and Sox2. Moreover, the NSCs could differentiate into three subtypes of neural lineages, neurons, astrocytes, and oligodendrocytes. The results together suggested that ESCs could efficiently differentiate into tripotent NSCs through specification in 3D culture (for approximately 10 days) followed by 2D culture (for seven days).  相似文献   

3.
4.
5.
With the intent to achieve the best modalities for myocardial cell therapy, different cell types are being evaluated as potent sources for differentiation into cardiomyocytes. Embryonic stem cells and induced pluripotent stem cells have great potential for future progress in the treatment of myocardial diseases. We reviewed aspects of epigenetic mechanisms that play a role in the differentiation of these cells into cardiomyocytes. Cardiomyocytes proliferate during fetal life, and after birth, they undergo permanent terminal differentiation. Upregulation of cardiac-specific genes in adults induces hypertrophy due to terminal differentiation. The repression or expression of these genes is controlled by chromatin structural and epigenetic changes. However, few studies have reviewed and analyzed the epigenetic aspects of the differentiation of embryonic stem cells and induced pluripotent stem cells into cardiac lineage cells. In this review, we focus on the current knowledge of epigenetic regulation of cardiomyocyte proliferation and differentiation from embryonic and induced pluripotent stem cells through histone modification and microRNAs, the maintenance of pluripotency, and its alteration during cardiac lineage differentiation.  相似文献   

6.
7.
Adult human cardiomyocytes have an extremely limited proliferative capacity, which poses a great barrier to regenerative medicine and research. Human embryonic stem cells (hESCs) have been proposed as an alternative source to generate large numbers of clinical grade cardiomyocytes (CMs) that can have potential therapeutic applications to treat cardiac diseases. Previous studies have shown that bioactive lipids are involved in diverse cellular responses including cardiogenesis. In this study, we explored the novel function of the chemically synthesized bioactive lipid O-cyclic phytosphingosine-1-phosphate (cP1P) as an inducer of cardiac differentiation. Here, we identified cP1P as a novel factor that significantly enhances the differentiation potential of hESCs into cardiomyocytes. Treatment with cP1P augments the beating colony number and contracting area of CMs. Furthermore, we elucidated the molecular mechanism of cP1P regulating SMAD1/5/8 signaling via the ALK3/BMP receptor cascade during cardiac differentiation. Our result provides a new insight for cP1P usage to improve the quality of CM differentiation for regenerative therapies.  相似文献   

8.
9.
Neurons that have been derived from various types of stem cells have recently undergone significant study due to their potential for use in various aspects of biomedicine. In particular, glutamatergic neurons differentiated from embryonic stem cells (ESCs) potentially have many applications in both basic research and regenerative medicine. This review summarized the literatures published thus far and focused on two areas related to these applications. Firstly, these neurons can be used to investigate neuronal signal transduction during differentiation and this means that the genes/proteins/markers involved in this process can be identified. In this way, the dynamic spatial and temporal changes associated with neuronal morphology can be investigated relatively easily. Such an in vitro system can also be used to study how neurons during neurogenesis integrate into normal tissue. At the same time, the integration, regulation and functions of extracellular matrix secretion, various molecular interactions, various ion channels, the neuronal microenvironment, etc., can be easily traced. Secondly, the disease-related aspects of ESC-derived glutamatergic neurons can also be studied and then applied therapeutically. In the future, greater efforts are needed to explore how ESC-differentiated glutamatergic neurons can be used as a neuronal model for the study of Alzheimer’s disease (AD) mechanistically, to identify possible therapeutic strategies for treating AD, including tissue replacement, and to screen for drugs that can be used to treat AD patients. With all of the modern technology that is available, translational medicine should begin to benefit patients soon.  相似文献   

10.
11.
There is considerable attention regarding the role of receptor signaling and downstream-regulated mediators in the homeostasis of adipocytes, but less information is available concerning adipose-derived stem cell (ASC) biology. Recent studies revealed that the pathways regulating ASC differentiation involve the activity of receptor tyrosine kinases (RTKs), including fibroblast growth factor, vascular endothelial growth factor, ErbB receptors and the downstream-regulated serine/threonine protein kinase B (Akt) and phosphatase and tensin homolog (PTEN) activity. RTKs are cell surface receptors that represent key regulators of cellular homeostasis but also play a critical role in the progression of cancer. Many of the metabolic effects and other consequences of activated RTKs are mediated by the modulation of Akt and extracellular signal-regulated protein kinases 1 (Erk-1) signaling. Akt activity sustains survival and the adipogenic differentiation of ASCs, whereas Erk-1 appears downregulated. The inhibition of FGFR-1, EGFR and ErbB2 reduced proliferation, but only FGFR-1 inihibition reduced Akt activity and adipogenesis. Adipogenesis and neovascularization are also chronologically and spatially coupled processes and RTK activation and downstream targets are also involved in ASC-mediated angiogenesis. The potentiality of ASCs and the possibility to modulate specific molecular pathways underlying ASC biological processes and, in particular, those shared with cancer cells, offer new exciting strategies in the field of regenerative medicine.  相似文献   

12.
Spheroids reproduce the tissue structure that is found in vivo more accurately than classic two-dimensional (2D) monolayer cultures. We cultured human periodontal ligament stem cells (HPLSCs) as spheroids that were embedded in collagen gel to examine whether their cementogenic differentiation could be enhanced by treatment with recombinant human plasminogen activator inhibitor-1 (rhPAI-1). The upregulated expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP), established cementoblast markers, was observed in the 2D monolayer HPLSCs that were treated with rhPAI-1 for 3 weeks compared with that in the control and osteogenic-induction medium groups. In the embedded HPLSC spheroids, rhPAI-1 treatment induced interplay between the spheroids and collagenous extracellular matrix (ECM), indicating that disaggregated HPLSCs migrated and spread into the surrounding ECM 72 h after three-dimensional (3D) culture. Western blot and immunocytochemistry analyses showed that the CEMP1 expression levels were significantly upregulated in the rhPAI-1-treated embedded HPLSC spheroids compared with all the 2D monolayer HPLSCs groups and the 3D spheroid groups. Therefore, 3D collagen-embedded spheroid culture in combination with rhPAI-1 treatment may be useful for facilitating cementogenic differentiation of HPLSCs.  相似文献   

13.
14.
In patients with type 1 diabetes (T1D), compromised pancreatic β-cell functions are compensated through daily insulin injections or the transplantation of pancreatic tissue or islet cells. However, both approaches are associated with specific challenges. The transplantation of mesenchymal stem cells (MSCs) represents a potential alternative, as MSCs have tissue-forming capacity and can be isolated from various tissues. The human umbilical cord (hUC) is a good source of freely available MSCs, which can be collected through pain-free, non-invasive methods subject to minimal ethical concerns. We sought to develop a method for the in vitro generation of insulin-producing cells (IPCs) using MSCs. We examined the potential therapeutic uses and efficacy of IPCs generated from hUC-derived MSCs (hUC-IPCs) and human adipose tissue (hAD)-derived MSCs (hAD-IPCs) through in vitro experiments and streptozotocin (STZ)-induced C57BL/6 T1D mouse models. We discovered that compared to hAD-IPCs, hUC-IPCs exhibited a superior insulin secretion capacity. Therefore, hUC-IPCs were selected as candidates for T1D cell therapy in mice. Fasting glucose and intraperitoneal glucose tolerance test levels were lower in hUC-IPC-transplanted mice than in T1D control mice and hAD-IPC-transplanted mice. Our findings support the potential use of MSCs for the treatment of T1D.  相似文献   

15.
16.
It is evident that depletion of interstitial cells and dysfunction of nitric oxide (NO) pathways are key players in development of several gastrointestinal (GI) motility disorders such as diabetic gastroparesis (DGP). One of the main limitations of DGP research is the lack of isolation methods that are specific to interstitial cells, and therefore conducting functional studies is not feasible. The present study aims (i) to differentiate telomerase transformed mesenchymal stromal cells (iMSCs) into platelet-derived growth factor receptor-α-positive cells (PDGFRα-positive cells) using connective tissue growth factor (CTGF) and L-ascorbic acids; (ii) to investigate the effects of NO donor and inhibitor on the survival rate of differentiated PDGFRα-positive cells; and (iii) to evaluate the impact of increased glucose concentrations, mimicking diabetic hyperglycemia, on the gene expression of neuronal nitric oxide synthase (nNOS). A fibroblastic differentiation-induction medium supplemented with connective tissue growth factor was used to differentiate iMSCs into PDGFRα-positive cells. The medium was changed every day for 21 days to maintain the biological activity of the growth factors. Gene and protein expression, scanning electron and confocal microscopy, and flow cytometry analysis of several markers were conducted to confirm the differentiation process. Methyl tetrazolium cell viability, nitrite measurement assays, and immunostaining were used to investigate the effects of NO on PDGFRα-positive cells. The present study, for the first time, demonstrated the differentiation of iMSCs into PDGFRα-positive cells. The outcomes of the functional studies showed that SNAP (NO donor) increased the survival rate of differentiated PDGFRα-positive cells whereas LNNA (NO inhibitor) attenuated these effects. Further experimentations revealed that hyperglycemia produced a significant increase in expression of nNOS in PDGFRα-positive cells. Differentiation of iMSCs into PDGFRα-positive cells is a novel model to conduct functional studies and to investigate the involvement of NO pathways. This will help in identifying new therapeutic targets for treatment of DGP.  相似文献   

17.
Organochlorine pesticides, such as DDT, methoxychlor, and their metabolites, have been characterized as endocrine disrupting chemicals (EDCs); suggesting that their modes of action involve interaction with or abrogation of endogenous endocrine function. This study examined whether embryonic thymocyte death and alteration of differentiation induced by the primary metabolite of methoxychlor, HPTE, rely upon estrogen receptor binding and concurrent T cell receptor signaling. Estrogen receptor inhibition of ERα or GPER did not rescue embryonic thymocyte death induced by HPTE or the model estrogen diethylstilbestrol (DES). Moreover, adverse effects induced by HPTE or DES were worsened by concurrent TCR and CD2 differentiation signaling, compared with EDC exposure post-signaling. Together, these data suggest that HPTE- and DES-induced adverse effects on embryonic thymocytes do not rely solely on ER alpha or GPER but may require both. These results also provide evidence of a potential collaborative signaling mechanism between TCR and estrogen receptors to mediate adverse effects on embryonic thymocytes, as well as highlight a window of sensitivity that modulates EDC exposure severity.  相似文献   

18.
Recent experiments have explored the impact of Wnt/β-catenin signaling and Substance P (SP) on the regulation of osteogenesis. However, the molecular regulatory mechanisms of SP on the formation of osteoblasts is still unknown. In this study, we investigated the impact of SP on the differentiation of MC3T3-E1 cells. The osteogenic effect of SP was observed at different SP concentrations (ranging from 10−10 to 10−8 M). To unravel the underlying mechanism, the MC3T3-E1 cells were treated with SP after the pretreatment by neurokinin-1 (NK1) antagonists and Dickkopf-1 (DKK1) and gene expression levels of Wnt/β-catenin signaling pathway components, as well as osteoblast differentiation markers (collagen type I, alkaline phosphatase, osteocalcin, and Runx2), were measured using quantitative polymerase chain reaction (PCR). Furthermore, protein levels of Wnt/β-catenin signaling pathway were detected using Western blotting and the effects of SP, NK1 antagonist, and DKK1 on β-catenin activation were investigated by immunofluorescence staining. Our data indicated that SP (10−9 to 10−8 M) significantly up-regulated the expressions of osteoblastic genes. SP (10−8 M) also elevated the mRNA level of c-myc, cyclin D1, and lymphocyte enhancer factor-1 (Lef1), as well as c-myc and β-catenin protein levels, but decreased the expression of Tcf7 mRNA. Moreover, SP (10−8 M) promoted the transfer of β-catenin into nucleus. The effects of SP treatment were inhibited by the NK1 antagonist and DKK1. These findings suggest that SP may enhance differentiation of MC3T3-E1 cells via regulation of the Wnt/β-catenin signaling pathway.  相似文献   

19.
20.
目的探讨血小板源性生长因子(Platelet derived growth factor,PDGF)-BB诱导骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cells,BMSCs)向血管平滑肌样细胞(Vascular smooth muscle-like cells,VSMLCs)分化过程中Periostin的表达及其在促VSMLCs分化中的作用。方法采用全骨髓贴壁培养法分离和培养大鼠BMSCs,取第2代BMSCs分为2组:诱导Ⅰ组(用50 ng/ml PDGF-BB单独向VSMLCs诱导)和诱导Ⅱ组(加入地塞米松1μmol/L、胰岛素1μmol/L、吲哚美辛1μmol/L、3-异丁基-1甲基黄嘌呤0.5 mmol/L,向脂肪样细胞诱导),以大鼠胸大动脉平滑肌细胞作为阳性对照。分别于诱导后7 d和14 d,采用RT-PCR检测细胞中平滑肌肌动蛋白(SMα-actin)、平滑肌肌球蛋白重链(SM MHC)、平滑肌肌钙结合蛋白(SM Calponin)和Periostin mRNA的转录水平,Western blot检测Periostin蛋白的表达水平。结果诱导Ⅰ组细胞的SMα-actin、SM MHC、SMCalponin和Periostin基因mRNA及Periostin蛋白的表达水平14 d比7 d显著增强,且差异有统计学意义(P<0.05);14 d与阳性细胞相比,差异无统计学意义(P>0.05);未诱导组及诱导Ⅱ组在14 d均无表达。结论 PDGF-BB(50 ng/ml)能够单独诱导BMSCs向VSMCs分化,Periostin在此过程中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号