This study was the first comprehensive investigation of the dependence of mitochondrial enzyme response (catalytic subunits of mitochondrial complexes (MC) I-V, including NDUFV2, SDHA, Cyt b, COX1 and ATP5A) and mitochondrial ultrastructure in the rat cerebral cortex (CC) on the severity and duration of in vivo hypoxic exposures. The role of individual animal’s resistance to hypoxia was also studied. The respiratory chain (RC) was shown to respond to changes in environmental [O2] as follows: (a) differential reaction of mitochondrial enzymes, which depends on the severity of the hypoxic exposure and which indicates changes in the content and catalytic properties of mitochondrial enzymes, both during acute and multiple exposures; and (b) ultrastructural changes in mitochondria, which reflect various degrees of mitochondrial energization. Within a specific range of reduced O2 concentrations, activation of the MC II is a compensatory response supporting the RC electron transport function. In this process, MC I develops new kinetic properties, and its function recovers in hypoxia by reprograming the RC substrate site. Therefore, the mitochondrial RC performs as an in vivo molecular oxygen sensor. Substantial differences between responses of rats with high and low resistance to hypoxia were determined. 相似文献
There is growing evidence regarding the role of mitochondrial dysfunction in osteoarthritis (OA) and rheumatoid arthritis (RA). However, quantitative comparison of synovial mitochondrial derangements in these main arthritis forms is missing. A prospective clinical study was conducted on adult patients undergoing knee surgery. Patients were allocated into RA and OA groups based on disease-specific clinical scores, while patients without arthritis served as controls. Synovial samples were subjected to high-resolution respirometry to analyze mitochondrial functions. From the total of 814 patients, 109 cases were enrolled into the study (24 RA, 47 OA, and 38 control patients) between 1 September 2019 and 31 December 2021. The decrease in complex I-linked respiration and dyscoupling of mitochondria were characteristics of RA patients, while both arthritis groups displayed reduced OxPhos activity compared to the control group. However, no significant difference was found in complex II-related activity between the OA and RA groups. The cytochrome C release and H2O2 formation were increased in both arthritis groups. Mitochondrial dysfunction was present in both arthritis groups; however, to a different extent. Consequently, mitochondrial protective agents may have major benefits for arthritis patients. Based on our current study, we recommend focusing on respiratory complex I in rheumatoid arthritis research. 相似文献
The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production. 相似文献
An electrochemical two-compartment cell was used to study the photo-induced insertion and transport of hydrogen through a palladium foil covered with a thin layer of the semiconducting thiophene oligomer sexithiophene, which photoelectrochemical current–voltage measurements have characterized as p-type with a photopotential of 200 mV and photocurrents up to 0.3 mA cm–2 at –0.8 V vs. SCE in a pH 3 electrolyte. Upon illumination the flux of hydrogen through the composite electrode was found to increase by a factor of two. The photoinduced enhancement on the hydrogen insertion was not stable since the photoactivity of the material altered under the influence of light. FTIR measurements showed that this is due to hydration of CC-double bonds destroying the conjunctive system of the p-orbitals necessary for the semiconducting properties. Diffusion coefficients of the sexithiophene/palladium electrode were found to be one order of magnitude smaller than in uncovered palladium, which was attributed to the lower hydrogen absorption in the oligomer. The relevance of light induced proton transfer in organic layers for the development of energy converting devices and sensors is discussed. 相似文献
Proton transfer across membranes and membrane proteins is a central process in biological systems. Zn2+ ions are capable of binding to acidic residues, often found within such specific pathways, thereby leading to a blockage. Here we probed Zn2+inhibition of the proton‐pumping NADH:ubiquinone oxidoreductase from Escherichia coli by means of electrochemically induced FTIR difference spectroscopy. Numerous conformational changes were identified including those that arise from the reorganization of the membrane arm upon electron transfer in the peripheral arm of the protein. Signals at very high wavenumbers (1781 and 1756 cm?1) point to the perturbation of acidic residues in a highly hydrophobic environment upon Zn2+ binding. In variant D563NL, which lacks part of the proton pumping activity (residue located on the horizontal amphipathic helix), the spectral signature of Zn2+ binding is changed. Our data support a role for this residue in proton translocation. 相似文献
Mitochondrial i-AAA proteinase Yme1 is a multifunctional protein that plays important roles in maintaining mitochondrial protein homeostasis and regulating biogenesis and function of mitochondrial proteins. However, due to the complex interplay of mitochondria and the multifunctional nature of Yme1, how Yme1 affects mitochondrial function and protein homeostasis is still poorly understood. In this study, we investigated how YME1 deletion affects yeast Saccharomyces cerevisiae growth, chronological life span, mitochondrial protein homeostasis and function, with a focus on the mitochondrial oxidative phosphorylation (OXPHOS) complexes. Our results show that whilst the YME1 deleted cells grow poorly under respiratory conditions, they grow similar to wild-type yeast under fermentative conditions. However, the chronological life span is impaired, indicating that Yme1 plays a key role in longevity. Using highly enriched mitochondrial extract and proteomic analysis, we show that the abundances of many mitochondrial proteins are altered by YME1 deletion. Several components of the respiratory chain complexes II, III, IV and V were significantly decreased, suggesting that Yme1 plays an important role in maintaining the level and function of complexes II-V. This result was confirmed using blue native-PAGE and in-solution-based enzyme activity assays. Taken together, this study shows that Yme1 plays an important role in the chronological life span and mitochondrial protein homeostasis and has deciphered its function in maintaining the activity of mitochondrial OXPHOS complexes. 相似文献
Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex I of Culex pipiens pallens (Diptera: Culicidae) were investigated and compared with that of rotenone. The results showed that amorphigenin and rotenone can decrease the mitochondrial complex I activity both in vivo and in vitro as the in vivo IC50 values (the inhibitor concentrations leading to 50% of the enzyme activity lost) were determined to be 2.4329 and 2.5232 μmol/L, respectively, while the in vitro IC50 values were 2.8592 and 3.1375 μmol/L, respectively. Both amorphigenin and rotenone were shown to be reversible and mixed-I type inhibitors of the mitochondrial complex I of Cx. pipiens pallens, indicating that amorphigenin and rotenone inhibited the enzyme activity not only by binding with the free enzyme but also with the enzyme-substrate complex, and the values of KI and KIS for amorphigenin were determined to be 20.58 and 87.55 μM, respectively, while the values for rotenone were 14.04 and 69.23 μM, respectively. 相似文献
Carbon fibers (CFs) are a promising candidate as electrode materials for flexible supercapacitors given its light weight and moderate cost. In this study, the lignin used was partially separated from kraft bamboo pulping black liquor and the higher molecular weight fraction, unavoidably contains a small amount of silicon compounds, so named silicon-contained lignin. Novel CFs were prepared using commercial polyacrylonitrile (PAN) and the lignin by electrospinning and further carbonization. Even in the presence of silicon compounds, the fibrous morphology of precursor fibers was significantly good, and the CFs with uniform fiber diameter and high specific surface area up to 182 m2/g were obtained with an increase in silicon-contained lignin. The CFs fabricated from silicon-contained lignin and commercial PAN had higher specific capacitance (22.20 mF/cm2 at 10 mA/cm2) and superb cycling stability (94.21%) than that from silicon-free lignin or pure PAN separately. 相似文献
The major seed storage proteins (SSPs) in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi), which was generated with RNA interference (RNAi)-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs. 相似文献
APOE ε4 allele (ApoE4) is the primary genetic risk factor for sporadic Alzheimer’s disease (AD), expressed in 40–65% of all AD patients. ApoE4 has been associated to many pathological processes possibly linked to cognitive impairment, such as amyloid-β (Aβ) and tau pathologies. However, the exact mechanism underlying ApoE4 impact on AD progression is unclear, while no effective therapies are available for this highly debilitating neurodegenerative disorder. This review describes the current knowledge of ApoE4 interaction with mitochondria, causing mitochondrial dysfunction and neurotoxicity, associated with increased mitochondrial Ca2+ and reactive oxygen species (ROS) levels, and it effects on mitochondrial dynamics, namely fusion and fission, and mitophagy. Moreover, ApoE4 translocates to the nucleus, regulating the expression of genes involved in aging, Aβ production, inflammation and apoptosis, potentially linked to AD pathogenesis. Thus, novel therapeutical targets can be envisaged to counteract the effects induced by ApoE4 in AD brain. 相似文献
Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system—Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted. 相似文献
Two new rhenium(I) carbonyl complexes with cationic 2,2′-bipyridyl ligands were synthesized and characterized. The electrogenerated chemiluminescence (ECL) of the rhenium(I) carbonyl complexes was first investigated in aqueous solution using the co-reactant tri-n-propylamine (TPrA). The ECL behavior of the complexes was also studied in the presence of several surfactants. The oxidation of both TPrA and the rhenium(I) complexes was facilitated in the presence of Triton X-100, and the ECL intensity was enhanced 300-fold at a Au electrode. 相似文献
Mitochondria are an essential part of most eukaryotic cells. The crucial role of these organelles is the production of metabolic energy, which is converted into ATP in oxidative phosphorylation. They are also involved in and constitute apoptosis, the site of many metabolic processes. Some of the factors that negatively affect mitochondria are stress, excessive exercise, disease, and the aging process. Exercise can cause the release of large amounts of free radicals, inflammation, injury, and stress. All of these factors can contribute to mitochondrial dysfunction, which can consistently lead to inflammatory responses, tissue damage, organ dysfunction, and a host of diseases. The functions of the mitochondria and the consequences of their disturbance can be of great importance in the breeding and use of horses. The paper reviews mitochondrial disorders in horses and, based on the literature, indicates genetic markers strongly related to this issue. 相似文献
Summary: Blends of different compositions were prepared from: a thermoplastic elastomer (EPDM), a low density polyethylene (PE), a polystyrene crosslinked with a small amount of divinylbenzene (PS‐co‐DVB) and an inorganic proton conductor: antimonic acid (HSb). The blends obtained were sulfonated heterogeneously with chlorosulfonic acid and were then structurally and electrically characterized by means of the following techniques: differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), crystallization kinetics under non‐isothermal conditions and complex impedance spectroscopy.
Dynamic mechanical analysis for EPDM and EP‐3 blends series. 相似文献