首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Ovarian cancer (OC) is one of the most lethal cancers in women. The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25D3, calcitriol) has anticancer activity in several cancers, including ovarian cancer, but the required pharmacological doses may cause hypercalcemia. We hypothesized that newly developed, low calcemic, vitamin D analogs (an1,25Ds) may be used as anticancer agents instead of calcitriol in ovarian cancer cells. Methods: We used two patient-derived high-grade serous ovarian cancer (HGSOC) cell lines with low (13781) and high (14433) mRNA expression levels of the gene encoding 1,25-dihydroxyvitamin D3 24-hydroxylase CYP24A1, one of the main target genes of calcitriol. We tested the effect of calcitriol and four structurally related series of an1,25Ds (PRI-1906, PRI-1907, PRI-5201, PRI-5202) on cell number, viability, the expression of CYP24A1, and the vitamin D receptor (VDR). Results: CYP24A1 mRNA expression increased in a concentration-dependent manner after treatment with all compounds. In both cell lines, after 4 h, PRI-5202 was the most potent analog (in 13781 cells: EC50 = 2.98 ± 1.10 nmol/L, in 14433 cells: EC50 = 0.92 ± 0.20 nmol/L), while PRI-1907 was the least active one (in 13781 cells: EC50 = n/d, in 14433 cells: EC50 = n/d). This difference among the analogs disappeared after 5 days of treatment. The 13781 cells were more sensitive to the an1,25Ds compared with 14433 cells. The an1,25Ds increased nuclear VDR levels and reduced cell viability, but only in the 13781 cell line. Conclusions: The an1,25Ds had different potencies in the HGSOC cell lines and their efficacy in increasing CYP24A1 expression was cell line- and chemical structure-dependent. Therefore, choosing sensitive cancer cell lines and further optimization of the analogs’ structure might lead to new treatment options against ovarian cancer.  相似文献   

2.
Ferroptosis is a kind of iron-dependent programed cell death. Vitamin D has been shown to be an antioxidant and a regulator of iron metabolism, but the relationship between vitamin D and ferroptosis is poorly studied in fish. This study used zebrafish liver cells (ZFL) to establish a ferroptosis model to explore the effect of 1,25(OH)2D3 on cell ferroptosis and its mechanism of action. The results showed that different incubation patterns of 1,25(OH)2D3 improved the survival rate of ZFL, mitigated mitochondrial damage, enhanced total glutathione peroxidase (GPx) activity, and reduced intracellular reactive oxygen species (ROS), lipid peroxidation (LPO), and malondialdehyde (MDA), as well as iron ion levels, with the best effect at 200 pM 1,25(OH)2D3 preincubation for 72 h. Preincubation of ZFL at 200 pM 1,25(OH)2D3 for 72 h downgraded keap1 and ptgs2 gene expression, increased nrf2, ho-1, fth1, gpx4a,b expression, and lowered the expression of the nf-κb p65,il-6,il-1β gene, thus reducing the expression of hamp1. The above results indicate that different incubation patterns of 1,25(OH)2D3 have protective effects on ferroptosis of ZFL induced by ferroptosis activator RSL3 and 1,25(OH)2D3 can inhibit ferroptosis of ZFL by regulating Keap1–Nrf2–GPx4 and NF-κB–hepcidin axis.  相似文献   

3.
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.  相似文献   

4.
Cholangiocarcinoma (CCA) is a devastating disease without effective treatments. 1α,25(OH)2D3, the active form of Vitamin D, has emerged as a new anti-cancer regimen. However, the side effect of hypercalcemia impedes its systemic administration. 25(OH)D is biologically inert and needs hydroxylation by CYP27B1 to form 1α,25(OH)2D3, which is originally believed to only take place in kidneys. Recently, the extra-renal expression of CYP27B1 has been identified and in vitro conversion of 25(OH)D to 1α,25(OH)2D3 has been found in some cancer cells with CYP27B1 expression. In this study, CYP27B1 expression was demonstrated in CCA cells and human CCA specimens. 25(OH)D effectively represses SNU308 cells growth, which was strengthened or attenuated as CYP27B1 overexpression or knockdown. Lipocalcin-2 (LCN2) was also found to be repressed by 25(OH)D. After treatment with 800 ng/mL 25(OH)D, the intracellular 1α,25(OH)2D3 concentration was higher in SNU308 cells with CYP27B1 overexpression than wild type SNU308 cells. In a xenograft animal experiment, 25(OH)D, at a dose of 6 μg/kg or 20 μg/kg, significantly inhibited SNU308 cells’ growth without inducing obvious side effects. Collectively, our results indicated that SNU308 cells were able to convert 25(OH)D to 1α,25(OH)2D3 and 25(OH)D CYP27B1 gene therapy could be deemed as a promising therapeutic direction for CCA.  相似文献   

5.
6.
Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1−/− deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.  相似文献   

7.
8.
Vitamin D plays an essential role in prevention and treatment of osteoporosis. Thyroid hormones, in addition to vitamin D, significantly contribute to regulation of bone remodeling cycle and health. There is currently no data about a possible connection between vitamin D treatment and the thyroid in the context of osteoporosis. Middle-aged Wistar rats were divided into: sham operated (SO), orchidectomized (Orx), and cholecalciferol-treated orchidectomized (Orx + Vit. D3; 5 µg/kg b.m./day during three weeks) groups (n = 6/group). Concentration of 25(OH)D in serum of the Orx + Vit. D3 group increased 4 and 3.2 times (p < 0.0001) respectively, compared to Orx and SO group. T4, TSH, and calcitonin in serum remained unaltered. Vit. D3 treatment induced changes in thyroid functional morphology that indicate increased utilization of stored colloid and release of thyroid hormones in comparison with hormone synthesis, to maintain hormonal balance. Increased expression of nuclear VDR (p < 0.05) points to direct, TSH independent action of Vit. D on thyrocytes. Strong CYP24A1 immunostaining in C cells suggests its prominent expression in response to Vit. D in this cell subpopulation in orchidectomized rat model of osteoporosis. The indirect effect of Vit. D on bone, through fine regulation of thyroid function, is small.  相似文献   

9.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) indirectly stimulates bone formation, but little is known about its direct effect on bone formation. In this study, we observed that 1,25(OH)2D3 enhances adipocyte differentiation, but inhibits osteoblast differentiation during osteogenesis. The positive role of 1,25(OH)2D3 in adipocyte differentiation was confirmed when murine osteoblasts were cultured in adipogenic medium. Additionally, 1,25(OH)2D3 enhanced the expression of adipocyte marker genes, but inhibited the expression of osteoblast marker genes in osteoblasts. The inhibition of osteoblast differentiation and promotion of adipocyte differentiation mediated by 1,25(OH)2D3 were compensated by Runx2 overexpression. Our results suggest that 1,25(OH)2D3 induces the transdifferentiation of osteoblasts to adipocytes via Runx2 downregulation in osteoblasts.  相似文献   

10.
1α,25-Dihydroxyvitamin D3 (abbreviated here as 1,25D3) is a hormonally active form of vitamin D3 (D3), and is produced from D3 by CYP27 A1-mediated hydroxylation at C25, followed by CYP27B1-mediated hydroxylation at C1. Further hydroxylation of 25D3 and 1,25D3 occurs at C23, C24 and C26 to generate corresponding metabolites, except for 1,25R,26D3. Since the capability of CYP27B1 to hydroxylate C1 of side-chain-hydroxylated metabolites other than 23S,25D3 and 24R,25D3 has not been examined, we have here explored the role of CYP27B1 in the C1 hydroxylation of a series of side-chain-hydroxylated D3 derivatives. We found that CYP27B1 hydroxylates the R diastereomers of 24,25D3 and 25,26D3 more effectively than the S diastereomers, but shows almost no activity towards either diastereomer of 23,25D3. This is the first report to show that CYP27B1 metabolizes 25,26D3 to the corresponding 1α-hydroxylated derivative, 1,25,26D3. It will be interesting to examine the physiological relevance of this finding.  相似文献   

11.
Two 24-fluoro-25-hydroxyvitamin D3 analogues (3,4) were synthesized in a convergent manner. The introduction of a stereocenter to the vitamin D3 side-chain C24 position was achieved via Sharpless dihydroxylation, and a deoxyfluorination reaction was utilized for the fluorination step. Comparison between (24R)- and (24S)-24-fluoro-25-hydroxyvitamin D3 revealed that the C24-R-configuration isomer 4 was more resistant to CYP24A1-dependent metabolism than its 24S-isomer 3. The new synthetic route of the CYP24A1 main metabolite (24R)-24,25-dihydroxyvitamin D3 (6) and its 24S-isomer (5) was also studied using synthetic intermediates (30,31) in parallel.  相似文献   

12.
The active form of vitamin D, 1α,25-(OH)2D3, not only promotes intestinal calcium absorption, but also regulates the formation of osteoclasts (OCs) and their capacity for bone mineral dissolution. Gal-3 is a newly discovered bone metabolic regulator involved in the proliferation, differentiation, and apoptosis of various cells. However, the role of galectin-3 (gal-3) in OC formation and the regulatory effects of 1α,25-(OH)2D3 have yet to be explored. To confirm whether gal-3 contributes to the regulatory effects of 1α,25-(OH)2D3 on osteoclastogenesis, osteoclast precursors (OCPs) were induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor κB ligand (RANKL). TRAP staining and bone resorption analyses were used to verify the formation and activation of OCs. qPCR, Western blotting, co-immunoprecipitation, and immunofluorescence assays were used to detect gene and protein expression. The regulatory effects of gal-3 in OC formation after treatment with 1α,25-(OH)2D3 were evaluated using gal-3 siRNA. The results showed that 1α,25-(OH)2D3 significantly increased gal-3 expression and inhibited OC formation and bone resorption. Expression levels of OC-related genes and proteins, matrix metalloproteinase 9 (MMP-9), nuclear factor of activated T cells 1 (NFATc1), and cathepsin K (Ctsk) were also inhibited by 1α,25-(OH)2D3. Gal-3 knockdown attenuated the inhibitory effects of 1α,25-(OH)2D3 on OC formation, activation, and gene and protein expression. In addition, gal-3 was co-localized with the vitamin D receptor (VDR). These data suggest that gal-3 contributes to the osteoclastogenesis inhibitory effect of lα,25-(OH)2D3, which is involved in bone and calcium homeostasis.  相似文献   

13.
Interleukin 33 (IL-33) belongs to the IL-1 family and is produced constitutively by epithelial and endothelial cells of various organs, such as the skin. It takes part in the maintenance of tissue homeostasis, repair, and immune response, including activation of Th2 lymphocytes. Its involvement in pathogenesis of several inflammatory diseases including psoriasis was also suggested, but this is not fully understood. The aim of the study was to investigate expression of IL-33 and its receptor, ST2, in psoriasis, and the effects of the active form of vitamin D (1,25(OH)2D3) on their expression in skin cells. Here we examined mRNA and protein profiles of IL-33 and ST2 in 18 psoriatic patients and healthy volunteers by qPCR and immunostaining techniques. Potential effects of 1,25(OH)2D3 and its receptor (VDR) on the expression of IL-33 and ST2 were tested in cultured keratinocytes, melanocytes, fibroblasts, and basal cell carcinoma cells. It was shown that 1,25(OH)2D3 effectively stimulated expression of IL-33 and its receptor ST2’s mRNAs in a time-dependent manner, in keratinocytes and to the lesser extends in melanocytes, but not in fibroblasts. Furthermore, the effect of vitamin D on expression of IL-33 and ST2 was VDR-dependent. Finally, we demonstrated that the expression of mRNA for IL-33 was mainly elevated in the psoriatic skin but not in its margin. Interestingly, ST2 mRNA was downregulated in psoriatic lesion compared to both marginal tissue as well as healthy skin. Our data indicated that vitamin D can modulate IL-33 signaling, opening up new perspectives for our understanding of the mechanism of vitamin D action in psoriasis therapy.  相似文献   

14.
Vitamin D3 and its metabolites comprise an endocrine system which plays a critical role in calcium homeostasis. The active form of vitamin D3 is 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Chromatin localization of 1,25(OH)2D3 and sucrose density gradient centrifutation have demonstrated the presence of an intestinal mucosa cytosol receptor which specifically binds 1,25(OH)2D3. The kinetic parameters of 1,25(OH)2D3 binding to its receptor have been determined by hydroxylapatite and reconstituted chromatin cytosol assays. Utilization of these assays has also permitted a determination of the precise structural requirements of the vitamin D ligand for the intestinal receptor. Furthermore, it has been possible to propose two receptor-ligand models which are capable of accommodating the conformationaly modile A ring of the vitamin D seco-steroids.  相似文献   

15.
Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2) were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.  相似文献   

16.
The vitamin D hormone, 1α,25‐dihydroxyvitamin D3 [1,25‐(OH)2D3], exerts its hormonal effects predominantly on intestine, bone, and kidney, where it plays a crucial role in calcium and phosphorus homeostasis and bone mineralization. In addition to its classical actions, 1,25(OH)2D3 exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)2D3 have suggested a multitude of potential therapeutic applications for the vitamin D hormone in the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). However, the calcemic effects induced by 1,25(OH)2D3—hypercalcemia, increased bone resorption, and soft tissue calcification—limit the use of the natural ligand in these clinical applications. Therefore, numerous 1,25(OH)2D3 analogues have been synthesized with the intent of producing therapeutic agents devoid of hypercalcemic and hyperphosphatemic side effects. To this aim, much attention has been focused on the development of 19‐nor‐vitamin D3 derivatives that lack the ring‐A exocyclic methylene group (C19). In this review, the 19‐nor‐1,25(OH)2D3 analogues are classified according to modifications made at the A‐ring, the side chain, or both the A‐ring and side chain, as well as other positions. The biological activities of these 19‐nor‐1,25(OH)2D3 analogues are summarized and their structure–activity relationships and binding features with the vitamin D receptor (VDR) are discussed.  相似文献   

17.
The major role of 24-hydroxylase (CYP24A1) is to maintain 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) homeostasis. Recently, it has been discovered that CYP24A1 also catalyses the hydroxylation of 20(OH)D3, producing dihydroxy-derivatives that show very effective antitumorigenic activities. Previously we showed a negative correlation of vitamin D receptor (VDR) and CYP27B1 expression with progression, aggressiveness and overall or disease-free survivals of skin melanomas. Therefore, we analyzed CYP24A1 expression in relation to clinicopathomorphological features of nevi, skin melanomas and metastases. In melanocytic tumors, the level of CYP24A1 was higher than in the normal epidermis. The statistically highest mean CYP24A1 level was found in nevi and early stage melanomas. With melanoma progression, CYP24A1 levels decreased and in advanced stages were comparable to the normal epidermis and metastases. Furthermore, the CYP24A1 expression positively correlated with VDR and CYP27B1, and negatively correlated with mitotic activity. Lower CYP24A1 levels correlated with the presence of ulceration, necrosis, nodular type and amelanotic phenotypes. Moreover, a lack of detectable CYP24A1 expression was related to shorter overall and disease-free survival. In conclusion, the local vitamin D endocrine system affects melanoma behavior and an elevated level of CYP24A1 appears to have an important impact on the formation of melanocytic nevi and melanomagenesis, or progression, at early stages of tumor development.  相似文献   

18.
Vitamin D3 shows tumoristatic and anticancer effects by acting through the vitamin D receptor (VDR), while hydroxylation of 25-hydroxyvitamin D3 at position 1α by CYP27B1 is an essential step in its activation. The expression of both the VDR and CYP27B1 has been found in many normal and cancer tissues, but there is a lack of information about its expression in human bladder cancers. The aim of the present research was to examine whether the expression of the VDR and CYP27B1 in bladder cancer was related to the prognostic markers and disease outcome. We analyzed VDR and CYP27B1 in samples of tumor and normal tissues obtained from 71 urinary bladder cancer patients. The highest VDR immunostaining was found in normal epithelium and was significantly lower in bladder cancer cells (p < 0.001 with Mann–Whitney U test). VDR expression was lowest in more advanced (pT2b–pT4) (p = 0.005 with Mann–Whitney U test) and metastasizing cancers (p < 0.05 and p = 0.004 with Mann–Whitney U test for nuclear and cytoplasmic VDR immunostaining, respectively). The lack of cytoplasmic and nuclear VDR was also related to shorter overall survival (for cytoplasmic VDR immunolocalization 13.3 vs. 55.3 months of survival, HR = 1.92, p = 0.04 and for nuclear VDR immunostaining 13.5 vs. 55.3 months of survival, HR = 2.47, p = 0.002 with Mantel-Cox test). In cases with the lack of high cytoplasmic VDR staining the non-classic differentiations (NDs) was observed in higher percentage of tumor area. CYP27B1 expression was lower in cancer cells than in normal epithelial cells (p = 0.03 with Mann–Whitney U test), but its expression did not correlate with tumor stage (pT), metastasizing, grade, mitotic activity or overall survival. In conclusion, expression of the VDR and CYP27B1 are deregulated in urothelial bladder cancers. Although our results showing a relationship between the decreased VDR expression and prognostic markers and survival time indicate potential usefulness of VDR as a new indicator of a poorer prognosis, further studies are needed in different patient cohorts by independent groups to validate this hypothesis. We also suggest that vitamin D-based therapies may represent an adjuvant strategy in treatment for bladder cancers expressing VDR.  相似文献   

19.
20.
The active vitamin D metabolites 25-OH−D and 1α,25-(OH)2−D play an essential role in controlling several cellular processes in the human body and are potentially effective in the treatment of several diseases, such as autoimmune diseases, cardiovascular diseases and cancer. The microbial synthesis of vitamin D2 (VD2) and vitamin D3 (VD3) metabolites has emerged as a suitable alternative to established complex chemical syntheses. In this study, a novel strain, Kutzneria albida, with the ability to form 25-OH−D2 and 25-OH−D3 was identified. To further improve the conversion of the poorly soluble substrates, several solubilizers were tested. 100-fold higher product concentrations of 25-OH−D3 and tenfold higher concentrations of 25-OH−D2 after addition of 5 % (w/v) 2-hydroxypropyl β-cyclodextrin (2-HPβCD) were reached. Besides the single-hydroxylation products, the human double-hydroxylation products 1,25-(OH)2−D2 and 1,25-(OH)2−D3 and various other potential single- and double-hydroxylation products were detected. Thus, K. albida represents a promising strain for the biotechnological production of VD2 and VD3 metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号