首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Diabetic kidney disease (DKD) is a worldwide microvascular complication of type 2 diabetes mellitus (T2DM). From several pathological mechanisms involved in T2DM-DKD, we focused on mitochondria damage induced by hyperglycemia-driven reactive species oxygen (ROS) accumulation and verified whether mesenchymal stem cells (MSCs) anti-oxidative, anti-apoptotic, autophagy modulation, and pro-mitochondria homeostasis therapeutic potential curtailed T2DM-DKD progression. For that purpose, we grew immortalized glomerular mesangial cells (GMCs) in hyper glucose media containing hydrogen peroxide. MSCs prevented these cells from apoptosis-induced cell death, ROS accumulation, and mitochondria membrane potential impairment. Additionally, MSCs recovered GMCs’ biogenesis and mitophagy-related gene expression that were downregulated by stress media. In BTBRob/ob mice, a robust model of T2DM-DKD and obesity, MSC therapy (1 × 106 cells, two doses 4-weeks apart, intra-peritoneal route) led to functional and structural kidney improvement in a time-dependent manner. Therefore, MSC-treated animals exhibited lower levels of urinary albumin-to-creatinine ratio, less mesangial expansion, higher number of podocytes, up-regulation of mitochondria-related survival genes, a decrease in autophagy hyper-activation, and a potential decrease in cleaved-caspase 3 expression. Collectively, these novel findings have important implications for the advancement of cell therapy and provide insights into cellular and molecular mechanisms of MSC-based therapy in T2DM-DKD setting.  相似文献   

2.
Large-scale RNA sequencing and genome-wide profiling data revealed the identification of a heterogeneous group of noncoding RNAs, known as long noncoding RNAs (lncRNAs). These lncRNAs play central roles in health and disease processes in diabetes and cancer. The critical association between aberrant expression of lncRNAs in diabetes and diabetic kidney disease have been reported. LncRNAs regulate diverse targets and can function as sponges for regulatory microRNAs, which influence disease phenotype in the kidneys. Importantly, lncRNAs and microRNAs may regulate bidirectional or crosstalk mechanisms, which need to be further investigated. These studies offer the novel possibility that lncRNAs may be used as potential therapeutic targets for diabetes and diabetic kidney diseases. Here, we discuss the functions and mechanisms of actions of lncRNAs, and their crosstalk interactions with microRNAs, which provide insight and promise as therapeutic targets, emphasizing their role in the pathogenesis of diabetes and diabetic kidney disease  相似文献   

3.
Zucker fatty diabetes mellitus (ZFDM) rats harboring the missense mutation (fa) in a leptin receptor gene have been recently established as a novel animal model of obesity and type 2 diabetes (T2D). Here, we explored changes in cardiovascular dynamics including blood pressure and heart rate (HR) associated with the progression of obesity and T2D, as well as pathological changes in adipose tissue and kidney. There was no significant difference in systolic blood pressure (SBP) in ZFDM-Leprfa/fa (Homo) compared with ZFDM-Leprfa/+ (Hetero) rats, while HR and plasma adrenaline in Homo were significantly lower than Hetero. The mRNA expression of monocyte chemotactic protein-1 in perirenal white adipose tissue (WAT) from Homo was significantly higher than Hetero. Interscapular brown adipose tissue (BAT) in Homo was degenerated and whitened. The plasma blood urea nitrogen in Homo was significantly higher than Hetero. In summary, we demonstrated for the first time that HR and plasma adrenaline concentration but not SBP in Homo decrease with obesity and T2D. In addition, inflammation occurs in WAT from Homo, while whitening occurs in BAT. Further, renal function is impaired in Homo. In the future, ZFDM rats will be useful for investigating metabolic changes associated with the progression of obesity and T2D.  相似文献   

4.
Diabetic kidney disease is a microvascular complication that occurs in patients with diabetes. It is strongly associated with increased risk of kidney replacement therapy and all-cause mortality. Incretins are peptide hormones derived from the gastrointestinal tract, that besides causing enhancement of insulin secretion after oral glucose intake, participate in many other metabolic processes. Antidiabetic drug classes, such as dipeptidyl peptidase 4 inhibitors and glucagon-like peptide receptor agonists, which way of action is based on incretins facility, not only show glucose-lowering properties but also have nephroprotective functions. The aim of this article is to present the latest information about incretin-based therapy and its influence on diabetic kidney disease appearance and progression, point its potential mechanisms of kidney protection and focus on future therapeutic possibilities bound with these two antidiabetic drug classes.  相似文献   

5.
Diabetes and obesity are metabolic diseases that have become alarming conditions in recent decades. Their rate of increase is becoming a growing concern worldwide. Recent studies have established that the composition and dysfunction of the gut microbiota are associated with the development of diabetes. For this reason, strategies such as the use of prebiotics to improve intestinal microbial structure and function have become popular. Consumption of prebiotics for modulating the gut microbiota results in the production of microbial metabolites such as short-chain fatty acids that play essential roles in reducing blood glucose levels, mitigating insulin resistance, reducing inflammation, and promoting the secretion of glucagon-like peptide 1 in the host, and this accounts for the observed remission of metabolic diseases. Prebiotics can be either naturally extracted from non-digestible carbohydrate materials or synthetically produced. In this review, we discussed current findings on how the gut microbiota and microbial metabolites may influence host metabolism to promote health. We provided evidence from various studies that show the ability of prebiotic consumption to alter gut microbial profile, improve gut microbial metabolism and functions, and improve host physiology to alleviate diabetes and obesity. We conclude among other things that the application of systems biology coupled with bioinformatics could be essential in ascertaining the exact mechanisms behind the prebiotic–gut microbe–host interactions required for diabetes and obesity improvement.  相似文献   

6.
Patients with type 2 diabetes mellitus (DM) may experience chronic microvascular complications such as diabetic retinopathy (DR) and diabetic nephropathy (DN) during their lifetime. In clinical studies, serum uric acid concentration has been found to be associated with DR and DN. The goal of this study was to evaluate the relationship between the increases in serum uric acid level and the severity of DR and albuminuria in Taiwanese patients with type 2 DM. We recorded serum uric acid concentration, the severity of DR, and the severity of albuminuria by calculating urinary albumin-to-creatinine ratio (UACR) in 385 patients with type 2 DM. In multivariate logistic regression analysis, a high uric acid concentration was a risk factor for albuminuria (odds ratio (OR), 1.227; 95% confidence interval (CI) = 1.015–1.482; p = 0.034) and DR (OR, 1.264; 95% CI = 1.084–1.473; p = 0.003). We also demonstrated that there was a higher concentration of serum uric acid in the patients with more severe albuminuria and DR. In conclusion, an increased serum uric acid level was significantly correlated with the severity of albuminuria and DR in Taiwanese patients with type 2 DM.  相似文献   

7.
Diabetic kidney disease (DKD) is a common and devastating complication in diabetic patients, which is recognized as a large and growing problem leading to end-stage kidney disease. As dietary-mediated therapies are gradually becoming more acceptable to patients with DKD, we planned to find active compounds on preventing DKD progression from dietary material. The present paper reports the renoprotective properties and underlying mechanisms of ginsenoside compound K (CK), a major metabolite in serum after oral administration of ginseng. CK supplementation for 16 weeks could improve urine microalbumin, the ratio of urinary albumin/creatinine and renal morphological abnormal changes in db/db mice. In addition, CK supplementation reshaped the gut microbiota by decreasing the contents of Bacteroides and Paraprevotella and increasing the contents of Lactobacillu and Akkermansia at the genus level, as well as reduced histidine-derived microbial metabolite imidazole propionate (IMP) in the serum. We first found that IMP played a significant role in the progression of DKD through activating toll-like receptor 4 (TLR4). We also confirmed CK supplementation can down-regulate IMP-induced protein expression of the TLR4 signaling pathway in vivo and in vitro. This study suggests that dietary CK could offer a better health benefit in the early intervention of DKD. From a nutrition perspective, CK or dietary material containing CK can possibly be developed as new adjuvant therapy products for DKD.  相似文献   

8.
Parkinson’s disease (PD), the second most common neurodegenerative disorder worldwide, is characterized by dopaminergic neuron degeneration and α-synuclein aggregation in the substantia nigra pars compacta of the midbrain. Emerging evidence has shown that dietary intake affects the microbial composition in the gut, which in turn contributes to, or protects against, the degeneration of dopaminergic neurons in affected regions of the brain. More specifically, the Mediterranean diet and Western diet, composed of varying amounts of proteins, carbohydrates, and fats, exert contrasting effects on PD pathophysiology via alterations in the gut microbiota and dopamine levels. Interestingly, the negative changes in the gut microbiota of patients with PD parallel changes that are seen in individuals that consume a Western diet, and are opposite to those that adhere to a Mediterranean diet. In this review, we first examine the role of prominent food groups on dopamine bioavailability, how they modulate the composition and function of the gut microbiota and the subsequent effects on PD and obesity pathophysiology. We then highlight evidence on how microbiota transplant and weight loss surgery can be used as therapeutic tools to restore dopaminergic deficits through optimizing gut microbial composition. In the process, we revisit dietary metabolites and their role in therapeutic approaches involving dopaminergic pathways. Overall, understanding the role of nutrition on dopamine bioavailability and gut microbiota in dopamine-related pathologies such as PD will help develop more precise therapeutic targets to rescue dopaminergic deficits in neurologic and metabolic disorders.  相似文献   

9.
To analyze the association between non-alcoholic fatty liver disease (NAFLD) and the incidence of diabetic nephropathy in patients with type 2 diabetes, the incidence of diabetic nephropathy was assessed in 413 type 2 diabetic patients, by testing the 24 h urinary albumin excretion rate (UAER). The NAFLD was diagnosed based on patient’s medical history and liver ultrasound. The difference in diabetic nephropathy incidence between patients with and without NAFLD was tested by χ2. Multivariate logistic regression analysis was used to assess the factors associated with diabetic nephropathy among type 2 diabetic patients. Total 363 out of 413 type 2 diabetic patients were enrolled in this study. The incidences of NAFLD and diabetic nephropathy in participants were approximately 56% (202/363) and 38% (137/363) respectively, and there was no significant difference in the prevalence of diabetic nephropathy between patients with and without NAFLD (37.1% vs. 38.5%, p = 0.787). The duration of diabetes (odds ratio [OR] 1.065, 95% confidence interval [CI] 1.014–1.120, p = 0.012), waist circumference (OR 1.077, 95% CI 1.040–1.116, p = 0.000), and fasting blood glucose (FBG; OR 1.136, 95% CI 1.023–1.1262, p = 0.017) were significantly associated with diabetic nephropathy, whereas sex, high blood pressure, total cholesterol (TC), triglyceride (TG), and ankle brachial pressure index (ABI) were not significantly associated with the disorder. The present results suggest that NAFLD is not related to the incidence of diabetic nephropathy in type 2 diabetes, but the duration of diabetes, waist circumference, and FBG are important factors for diabetic nephropathy in type 2 diabetes.  相似文献   

10.
Diabetes mellitus represents a growing concern, both for public economy and global health. In fact, it can lead to insidious macrovascular and microvascular complications, impacting negatively on patients’ quality of life. Diabetic patients often present diabetic kidney disease (DKD), a burdensome complication that can be silent for years. The average time of onset of kidney impairment in diabetic patients is about 7–10 years. The clinical impact of DKD is dangerous not only for the risk of progression to end-stage renal disease and therefore to renal replacement therapies, but also because of the associated increase in cardiovascular events. An early recognition of risk factors for DKD progression can be decisive in decreasing morbidity and mortality. DKD presents patient-related, clinician-related, and system-related issues. All these problems are translated into therapeutic inertia, which is defined as the failure to initiate or intensify therapy on time according to evidence-based clinical guidelines. Therapeutic inertia can be resolved by a multidisciplinary pool of healthcare experts. The timing of intensification of treatment, the transition to the best therapy, and dietetic strategies must be provided by a multidisciplinary team, driving the patients to the glycemic target and delaying or overcoming DKD-related complications. A timely nephrological evaluation can also guarantee adequate information to choose the right renal replacement therapy at the right time in case of renal impairment progression.  相似文献   

11.
Metabolites produced by an altered gut microbiota might mediate the effects in the brain. Among metabolites, the fecal volatile organic compounds (VOCs) are considered to be potential biomarkers. In this study, we examined both the VOCs and bacterial taxa in the feces from healthy subjects and Alzheimer’s disease (AD) patients at early and middle stages. Remarkably, 29 fecal VOCs and 13 bacterial genera were differentiated from the healthy subjects and the AD patients. In general, higher amounts of acids and esters were found in in the feces of the AD patients and terpenes, sulfur compounds and aldehydes in the healthy subjects. At the early stage of AD, the most relevant VOCs with a higher abundance were short-chain fatty acids and their producing bacteria, Faecalibacterium and Lachnoclostridium. Coinciding with the development of dementia in the AD patients, parallel rises of heptanoic acid and Peptococcus were observed. At a more advanced stage of AD, the microbiota and volatiles shifted towards a profile in the feces with increases in hexanoic acid, Ruminococcus and Blautia. The most remarkable VOCs that were associated with the healthy subjects were 4-ethyl-phenol and dodecanol, together with their possible producers Clostridium and Coprococcus. Our results revealed a VOCs and microbiota crosstalk in AD development and their profiles in the feces were specific depending on the stage of AD. Additionally, some of the most significant fecal VOCs identified in our study could be used as potential biomarkers for the initiation and progression of AD.  相似文献   

12.
Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1β, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.  相似文献   

13.
Type 2 diabetes mellitus patients are at significant risk of cardiovascular disease, however, the pathophysiology of these complications is complex and incompletely known in this population. The aim of this study was to compare the serum proteome of patients with type 2 diabetes mellitus presenting or not presenting cardiovascular disease with non-diabetic subjects to find essential proteins related to these cardiovascular complications. This cross-sectional study compares the serum proteome by a combination of protein depletion with 2D-DIGE (2-dimension Difference Gel Electrophoresis) methodology. The proteins differentially expressed were identified by MALDI TOF/TOF (Matrix-assisted laser desorption/ionization and Time-Of-Flight ion detector) or LC-MS/MS (Liquid Chromatography coupled to Mass-Mass Spectrometry). Type 2 diabetes mellitus patients with cardiovascular disease showed higher expression of plasma retinol binding protein and glutathione peroxidase-3 compared to those without cardiovascular disease and non-diabetic controls. These results show that proteins related to the inflammatory and redox state appear to play an important role in the pathogenesis of the cardiovascular disease in the type 2 diabetes mellitus patients.  相似文献   

14.
Metabolic surgery is a promising treatment for obese individuals with type 2 diabetes mellitus (T2DM), but the mechanism is not completely understood. Current understanding of the underlying ameliorative mechanisms relies on alterations in parameters related to the gastrointestinal hormones, biochemistry, energy absorption, the relative composition of the gut microbiota, and sera metabolites. A total of 13 patients with obesity and T2DM undergoing metabolic surgery treatments were recruited. Systematic changes of critical parameters and the effects and markers after metabolic surgery, in a longitudinal manner (before surgery and three, twelve, and twenty-four months after surgery) were measured. The metabolomics pattern, gut microbiota composition, together with the hormonal and biochemical characterizations, were analyzed. Body weight, body mass index, total cholesterol, triglyceride, fasting glucose level, C-peptide, HbA1c, HOMA-IR, gamma-glutamyltransferase, and des-acyl ghrelin were significantly reduced two years after metabolic surgery. These were closely associated with the changes of sera metabolomics and gut microbiota. Significant negative associations were found between the Eubacterium eligens group and lacosamide glucuronide, UDP-L-arabinose, lanceotoxin A, pipercyclobutanamide B, and hordatine B. Negative associations were identified between Ruminococcaceae UCG-003 and orotidine, and glucose. A positive correlation was found between Enterococcus and glutamic acid, and vindoline. Metabolic surgery showed positive effects on the amelioration of diabetes and metabolic syndromes, which were closely associated with the change of sera metabolomics, the gut microbiota, and other disease-related parameters.  相似文献   

15.
Type 2 diabetes mellitus (T2DM) patients are at a higher risk of developing Alzheimer’s disease (AD). Mounting evidence suggests the emerging important role of circadian rhythms in many diseases. Circadian rhythm disruption is considered to contribute to both T2DM and AD. Here, we review the relationship among circadian rhythm disruption, T2DM and AD, and suggest that the occurrence and progression of T2DM and AD may in part be associated with circadian disruption. Then, we summarize the promising therapeutic strategies targeting circadian dysfunction for T2DM and AD, including pharmacological treatment such as melatonin, orexin, and circadian molecules, as well as non-pharmacological treatments like light therapy, feeding behavior, and exercise.  相似文献   

16.
The prevalence of metabolic disorders, such as type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease (NAFLD), which are common risk factors for cardiovascular disease (CVD), has dramatically increased worldwide over the last decades. Although dietary habit is the main etiologic factor, there is an imperfect correlation between dietary habits and the development of metabolic disease. Recently, research has focused on the role of the microbiome in the development of these disorders. Indeed, gut microbiota is implicated in many metabolic functions and an altered gut microbiota is reported in metabolic disorders. Here we provide evidence linking gut microbiota and metabolic diseases, focusing on the pathogenetic mechanisms underlying this association.  相似文献   

17.
Coeliac disease (CD) and Type 1 diabetes mellitus (T1DM) are immune-mediated diseases. Emerging evidence suggests that dysbiosis in the gut microbiome plays a role in the pathogenesis of both diseases and may also be associated with the development of neuropathy. The primary goal in this cross-sectional pilot study was to identify whether there are distinct gut microbiota alterations in children with CD (n = 19), T1DM (n = 18) and both CD and T1DM (n = 9) compared to healthy controls (n = 12). Our second goal was to explore the relationship between neuropathy (corneal nerve fiber damage) and the gut microbiome composition. Microbiota composition was determined by 16S rRNA gene sequencing. Corneal confocal microscopy was used to determine nerve fiber damage. There was a significant difference in the overall microbial diversity between the four groups with healthy controls having a greater microbial diversity as compared to the patients. The abundance of pathogenic proteobacteria Shigella and E. coli were significantly higher in CD patients. Differential abundance analysis showed that several bacterial amplicon sequence variants (ASVs) distinguished CD from T1DM. The tissue transglutaminase antibody correlated significantly with a decrease in gut microbial diversity. Furthermore, the Bacteroidetes phylum, specifically the genus Parabacteroides was significantly correlated with corneal nerve fiber loss in the subjects with neuropathic damage belonging to the diseased groups. We conclude that disease-specific gut microbial features traceable down to the ASV level distinguish children with CD from T1DM and specific gut microbial signatures may be associated with small fiber neuropathy. Further research on the mechanisms linking altered microbial diversity with neuropathy are warranted.  相似文献   

18.
Metabolomics strategies are widely used to examine obesity and type 2 diabetes (T2D). Patients with obesity (n = 31) or T2D (n = 26) and sex- and age-matched controls (n = 28) were recruited, and serum and tear samples were collected. The concentration of 23 amino acids and 10 biogenic amines in serum and tear samples was analyzed. Statistical analysis and Pearson correlation analysis along with network analysis were carried out. Compared to controls, changes in the level of 6 analytes in the obese group and of 10 analytes in the T2D group were statistically significant. For obesity, the energy generation, while for T2D, the involvement of NO synthesis and its relation to insulin signaling and inflammation, were characteristic. We found that BCAA and glutamine metabolism, urea cycle, and beta-oxidation make up crucial parts of the metabolic changes in T2D. According to our data, the retromer-mediated retrograde transport, the ethanolamine metabolism, and, consequently, the endocannabinoid signaling and phospholipid metabolism were characteristic of both conditions and can be relevant pathways to understanding and treating insulin resistance. By providing potential therapeutic targets and new starting points for mechanistic studies, our results emphasize the importance of complex data analysis procedures to better understand the pathomechanism of obesity and diabetes.  相似文献   

19.
For many years, the dogma has been that insulin resistance precedes the development of hyperinsulinemia. However, recent data suggest a reverse order and place hyperinsulinemia mechanistically upstream of insulin resistance. Genetic background, consumption of the “modern” Western diet and over-nutrition may increase insulin secretion, decrease insulin pulses and/or reduce hepatic insulin clearance, thereby causing hyperinsulinemia. Hyperinsulinemia disturbs the balance of the insulin–GH–IGF axis and shifts the insulin : GH ratio towards insulin and away from GH. This insulin–GH shift promotes energy storage and lipid synthesis and hinders lipid breakdown, resulting in obesity due to higher fat accumulation and lower energy expenditure. Hyperinsulinemia is an important etiological factor in the development of metabolic syndrome, type 2 diabetes, cardiovascular disease, cancer and premature mortality. It has been further hypothesized that nutritionally driven insulin exposure controls the rate of mammalian aging. Interventions that normalize/reduce plasma insulin concentrations might play a key role in the prevention and treatment of age-related decline, obesity, type 2 diabetes, cardiovascular disease and cancer. Caloric restriction, increasing hepatic insulin clearance and maximizing insulin sensitivity are at present the three main strategies available for managing hyperinsulinemia. This may slow down age-related physiological decline and prevent age-related diseases. Drugs that reduce insulin (hyper) secretion, normalize pulsatile insulin secretion and/or increase hepatic insulin clearance may also have the potential to prevent or delay the progression of hyperinsulinemia-mediated diseases. Future research should focus on new strategies to minimize hyperinsulinemia at an early stage, aiming at successfully preventing and treating hyperinsulinemia-mediated diseases.  相似文献   

20.
Parkinson’s disease (PD) is a neurodegenerative disorder that affects 1% of the population over the age of 60. Diabetes Mellitus (DM) is a metabolic disorder that affects approximately 25% of adults over the age of 60. Recent studies showed that DM increases the risk of developing PD. The link between DM and PD has been discussed in the literature in relation to different mechanisms including mitochondrial dysfunction, oxidative stress, and protein aggregation. In this paper, we review the common microRNA (miRNA) biomarkers of both diseases. miRNAs play an important role in cell differentiation, development, the regulation of the cell cycle, and apoptosis. They are also involved in the pathology of many diseases. miRNAs can mediate the insulin pathway and glucose absorption. miRNAs can also regulate PD-related genes. Therefore, exploring the common miRNA biomarkers of both PD and DM can shed a light on how these two diseases are correlated, and targeting miRNAs is a potential therapeutic opportunity for both diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号