首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对蒸汽吞吐、蒸汽驱的低渗透区超稠油流动阻力大、开采困难等问题,提出低渗透区超稠油原位催化改质降黏技术。采用反应釜法和物模实验法,筛选高效原位改质催化剂,研究催化剂的注入方式,并筛选5种催化剂及其改质条件。研究表明:以有机锌为催化剂,催化剂用量为0.1%、稠油含水率为50%时,超稠油具有较好的改质降黏效果;物模实验法原位催化改质降黏效果优于反应釜法,稠油含水率为50%、催化剂用量为0.1%、反应温度为240 ℃、填砂管回压为8~10 MPa和反应时间为24 h条件下,稠油黏度由145 000 mPa·s降至54 260 mPa·s,降黏率达62.58%;物模实验法改质油的密度和酸值下降,重组分(胶质和沥青质)含量减少10.85%,300、500 ℃前馏分分别提高了6.75%、17.29%。在240 ℃、10 MPa条件下,采用自制生物质基调剖剂封堵优势渗流通道,将催化剂注入低渗填砂管后水驱,改质稠油黏度降至68 450 mPa·s,降黏率达52.79%,流动阻力减少19.74%,采出率达到95.22%,稠油综合采出率由46.94%增至85.13%。该方法为超稠油蒸汽吞吐、蒸汽驱低渗透区域的稠油进行原位催化改质降黏提高采收率提供了借鉴。  相似文献   

2.
超稠油改质降黏分子模拟及机理   总被引:1,自引:0,他引:1  
为了研究微乳液纳米镍对特超稠油的改质降黏效果,利用分离改质降黏前、后的特超稠油,对反应前、后稠油重质组分沥青质及胶质的平均分子量、元素及核磁共振进行测定,结合化学分子模拟软件Hyperchem对特超稠油改质降黏进行了分子模拟及机理研究。模拟实验结果表明:特超稠油经过改质降黏反应后,其黏度大幅度下降,氢/碳原子比升高;沥青质与胶质分子的尺寸明显减小,沥青质分子量降低幅度较大;改质降黏剂能与特超稠油重质组分稠环芳烃盘状中心核沥青质接触,并导致其稳定的盘状芳环结构破坏,从而使沥青质分子的聚集状态得以改善,胶质分子稳定沥青质分子的作用增强。  相似文献   

3.
针对风城超稠油在蒸汽吞吐生产中后期低温条件下开采效果较差的现状,引入了活性大分子降黏剂辅助蒸汽吞吐开采技术。以风城超稠油胶质、沥青质含量等主要物化性能为依据,设计制备了具有强亲油弱亲水特征的活性大分子降黏剂。模拟蒸汽吞吐工艺,室内评价显示降黏剂用量0.2%、油水质量比10∶3 时,所形成O/W 降黏体系初始表观黏度小于300mPa·s,降黏体系静态稳定,降黏剂耐温高达300 ℃,与正相破乳剂TA1031 配伍。现场试验显示开采温度低于60 ℃时,试验轮产油量比上一轮产量增加40.38 t,是上一轮产油量的2.27 倍。研究结果表明活性大分子降黏剂可大幅降低风城超稠油表观黏度,特别是改善超稠油在低温条件下的流动性,有效延长蒸汽吞吐的低温开采时间,提升周期产油量,应用前景广阔。  相似文献   

4.
以纳米铜和供氢剂为主要裂解剂,对辽河油田超稠油开展催化裂解改质降黏实验,在纳米铜质量分数为0.05%、供氢剂质量分数为0.1%、反应温度为180~270℃的条件下反应24 h,超稠油的黏度(50℃)从1.55×105 mPa·s降为2122~6684 mPa·s,降黏率达到95.69%~98.63%.原油的族组分分析表...  相似文献   

5.
稠油的改质降黏是指在非催化裂解的反应条件下,稠油烃类可以进行分解、异构化、芳构化、氢转移、叠合和烃化等多种反应,其中最主要的反应是分解反应(如断侧链、断环、脱氢等裂解反应)。改质降黏过程中裂化转化率与反应温度、反应时间相关。改质稠油的黏度的变化主要与裂化转化率有关,也就是说,在不同温度下,只要裂化转化率接近,减黏稠油的黏度基本接近,减黏稠油的黏度随裂化转化率的提高而降低。在实验条件下,200~350℃馏分的生成速率最大,对于一般的20%左右的裂化转化率而言,490℃以下时轻质馏分显著增多,490℃以上时轻质馏分显著降低。在裂化转化率低于25%,甲苯不溶物含量小于0.2%,满足一般减黏过程对缩合反应的控制要求。  相似文献   

6.
针对南堡35-2油田地层原油黏度高的特点,从族组分转化改善稠油流动性角度,评价了13种降黏剂的降黏性能。研究表明,降黏剂[Et3NH]Zncl3.co2+具有较优的改质降黏效果,在剂/油质量比1%、80%、反应16h条件下,可实现稠油黏度不可逆降低,降黏率达到22.0%。该降黏剂从根本上改善了稠油在地层中的流动性,有利于提高其采收率。  相似文献   

7.
在中国石化西北油田分公司中型试验装置上采用中国石化石油化工科学研究院研制的催化降黏剂对塔河TH12196单井稠油的降黏作用进行了考察。结果表明:当反应温度为160 ℃、反应时间为6 h、催化降黏剂加入量(w)为1.5%时,稠油降黏率达到54.5%;催化降黏率较热降黏率高51.4百分点,且降黏后稠油中重质组分含量减少,轻质组分含量增加;在稠油催化改质处理过程中,分子中较弱的化学键发生断裂,从而使稠油分子聚集体变小,产生不可逆降黏作用。  相似文献   

8.
注蒸汽条件下稠油催化改质降黏实验   总被引:1,自引:0,他引:1  
利用高温高压反应釜研究了自制油溶性有机镍盐作为催化剂的稠油水热裂解反应,考察了催化剂的加入量、反应温度、反应时间和加水量对催化水热裂解反应前后稠油黏度、族组成的影响,优选出最佳改质降黏反应条件,在此条件基础上,对改质降黏反应前后稠油元素进行分析。结果表明,与未添加催化剂的相比,在反应温度为240℃、加水量30%的体系中,添加0.1%的过渡金属有机酸镍催化剂,反应24 h 后稠油的黏度下降明显,沥青质含量下降1.4%,胶质含量下降5.0%,芳香分含量增加3.5%,饱和分含量增加2.9%.  相似文献   

9.
《石油化工》2016,45(10):1209
采用复合型有机金属盐催化体系对胜利某稠油进行地面催化改质降黏,并对催化改质降黏的机理进行了探讨。实验结果表明,降黏效果显著,降黏率大于99%;稠油组成显著轻质化,高于500℃的馏分由改质前的28.02%(w)增至改质后的52.20%(w)。改质前后的族组成、碳数分布和核磁分析结果显示,改质过程重质组分发生了脱侧链反应,生成轻质产物,并使重质组分转化成为缩合程度更高的胶质沥青质或焦炭。  相似文献   

10.
实验制备了单金属Ni、Fe及双金属Ni-Fe合金纳米晶催化剂,并以水合肼(N_2H_4·H_2O)为供氢剂,对旅大32-2脱水原油进行催化裂解加氢改质研究。采用TEM,XRD对所制备的催化剂进行表征;通过正交实验确定了最佳反应条件,并采用GC-MS,FTIR,TG-DSC等测试手段对原油及改质油样进行分析。表征结果显示,金属纳米晶催化剂平均粒径约为5.0~6.0 nm,且分布均匀。实验结果表明,金属纳米晶具有催化稠油大分子裂解并使供氢剂分解析氢双重功能,其中Ni-Fe合金/N_2H_4·H_2O体系共催化作用对稠油的降黏效果最佳,改质后油样中轻质组分含量为89.20%(w),上升了26.86百分点,黏度降至72 mPa·s,降黏率达95.6%;稠油经催化裂解加氢后重质组分结构被破坏,黏度发生不可逆的降低,稠油品质提高。  相似文献   

11.
新疆浅层特超稠油油藏由于原油粘度高,埋藏浅,地层温度低,天然能量不足,油藏流体不具备流动性;注蒸汽热采,随吞吐轮次增加,递减加大,采油速度降低,存水率升高,油汽比下降,效果变差,开采难度加大。为提高特超稠油开发效果,在普通稠油油藏注氮气辅助吞吐取得了很好效果的基础上,通过对特超稠油注氮气作用机理研究、物理模拟研究、注蒸汽加氮气吞吐数值模拟研究,确定油藏物性界限条件、氮气注入方式及合理的注采参数与时机。进行特超稠油注氮气提高开发效果试验取得成功,并首次大规模工业化注氮应用于新疆九7+8区齐古组浅层特超稠油油藏开发,效果显著。为改善特超稠油开采效果,提高吞吐阶段采收率,减缓特超稠油产量递减提供一条有效途径。  相似文献   

12.
为了探索海上稠油的热催化改质降黏技术的可行性,解决海上稠油的举升和集输问题,针对渤海西部某油田的稠油分析了稠油黏度与族组分关系,选择了PAS、FAS两种阴离子和Zn~(2+)、Cu~(2+)、Mn~(2+)、Fe~(3+)和Ni~(2+)5种阳离子组合共10种催化剂,进行催化改质降黏实验,对比了催化改质前后族组分的变化。研究结果表明:对于该渤海稠油来说,饱和烃和芳香烃含量越高黏度越低,饱和烃对稠油黏度影响明显大于芳香烃,胶质、沥青质含量越高,其黏度越大,沥青质对于该渤海稠油黏度影响略大于胶质,但由于稠油中胶质含量远大于沥青质含量,因此降低胶质含量是该渤海稠油催化改质的必然选择。PAS-Ni的催化降黏效果最好,可以使该渤海稠油黏度从2167 m Pa·s降至566 mPa·s,降黏率为73.88%,PAS-Fe的改质效果次之,稠油黏度降至716 mPa·s,降黏率为66.96%。改质后稠油四组分分析结果表明,催化改质反应主要降低了胶质含量,增加了饱和分和芳香分含量,沥青质含量有小幅度增加。图4表2参13  相似文献   

13.
以风城超稠油为研究对象,采用自制活性大分子降黏剂制备了风城超稠油O/W降黏体系,以超稠油O/W降黏体系的初始表观黏度为主要评价手段,系统考察了降黏剂用量、含水量、初始搅拌转速对风城超稠油O/W降黏体系初始表观黏度的影响。室内实验结果表明:活性大分子降黏剂对风城超稠油具有良好的初始降黏效果,在活性大分子降黏剂用量0.1%~0.2%、油水质量比10∶3~10∶4、初始搅拌转速不小于400r/min条件下,得到的风城超稠油O/W降黏体系初始表观黏度小于600mPa.s,降黏效果显著。  相似文献   

14.
超稠油水平井CO2与降黏剂辅助蒸汽吞吐技术   总被引:2,自引:0,他引:2  
为了改善超稠油油藏蒸汽吞吐开采效果,通过室内驱油实验研究水平井CO2与降黏剂辅助蒸汽驱驱油效率,利用数值模拟方法研究水平井CO2与降黏剂辅助蒸汽吞吐的降黏机理。研究表明:CO2与降黏剂辅助蒸汽驱驱油效率(80.8%)明显高于常规蒸汽驱驱油效率(65.4%);水平井CO2与降黏剂辅助蒸汽吞吐技术实现了降黏剂、CO2与蒸汽协同降黏作用的滚动接替,从而有效降低了注汽压力,扩大了蒸汽波及范围即扩大了降黏区域,提高了产油速度。根据温度分布和降黏机理的不同可将降黏区分成4个复合降黏区,即蒸汽复合降黏区、热水复合降黏区、低温水复合降黏区和CO2-降黏剂复合降黏区。矿场应用表明,水平井CO2与降黏剂辅助蒸汽吞吐技术在深部薄层超稠油油藏、深部厚层超稠油油藏和浅部薄层超稠油油藏开发过程中取得了显著的降黏增油效果。图6表5参15  相似文献   

15.
针对河南油田超稠油黏度高,流动性差,开采和输送困难等现状,本文展开对河南油田超稠油的乳化降黏研究。得到优化的复合降黏剂F2配方,其中,乳化降黏剂主剂RA-1、稳定剂聚丙烯酰胺、助剂碱质量比为1:0.25:0.36,在F2总加剂量为0.483%(占原油乳状液的质量百分率),乳化温度70℃,油水质量比为7:3下,可以制得均匀、稳定的O/W型超稠油乳状液,超稠油的黏度由240 Pa·s(50℃)降到其乳状液的42.8 mPa·s(50℃),降黏率高达99.98%。文中同时对降黏机理进行了探讨。  相似文献   

16.
以自制的油溶性有机镍盐作为催化剂进行稠油水热裂解反应.考察了催化剂加量、反应温度、反应时间和加水量对催化水热裂解反应前后稠油黏度、族组成的影响.催化水热裂解反应的最佳条件为:反应温度240℃,反应时问24 h,加水量30%,催化剂质量分数0.1%.对反应前后稠油的元素分析结果表明,与水热裂解反应相比,加入催化剂后的稠油黏度由11000 mPa·s降至3414 mPa·s,沥青质、胶质含量分别降低1.7%、1.6%,芳香分、饱和分含量分别增加0.8%、2.5%,稠油中C含量降低,H含量增加,H、C原子数比提高,而杂原子与C的原子数比降低.图4表6参8  相似文献   

17.
河南油田通过对古城和新庄二个稠油油田原油性质进行试验分析,提出了古城油田应采用以催化氧化降黏为主的复合催化降黏剂体系,新庄油田应采用以水热催化降黏为主的复合催化降黏剂体系.在古城油田和新庄油田四口井分别进行了室内研究和现场试验研究,已有一口井取得了一定效果,措施后原油平均分子量有明显降低,H/C比有所增加,原油黏度下降53.5%,增油44 t.  相似文献   

18.
塔河油田特超稠油在井筒掺稀降黏开采过程中掺稀比高、频繁上返异常,难以实现经济有效开采。针对塔河特超稠油高沥青质含量的特点,以1,3-丙二醇、仲钼酸铵和硝酸镍为原料,研发了一种基于γ-Al2O3载体的高孔隙度Ni-Mo 催化剂,评价了其地面改质降黏效果。结果表明,三叶形γ-Al2O3催化剂载体具有圆柱形孔隙结构,孔隙直径以5~11 nm为主。Ni-Mo 催化剂可以将特超稠油的黏度(50 ℃)从28 200 mPa·s降至298 mPa·s,降黏率为 98.94%,密度从 1.0070 g/mL 降至 0.8724 g/mL;同时,饱和烃的含量显著增加,胶质和沥青质的含量大幅降低。地面催化改质降黏与改质稀油回掺相结合的开采技术能有效降低特超稠油黏度,地面催化改质效果良好,可有效节约掺稀油用量,提升开采效果。  相似文献   

19.
为了改善浅层超稠油油藏蒸汽吞吐后期开发效果,采用解析分析和数值模拟方法,明确了超稠油油藏在注蒸汽驱替过程中的重力、驱动力的相互作用机理,提出了驱泄复合开采技术。通过油藏工程优化研究,设计了直井、水平井多种组合方式的蒸汽吞吐后期接替方式,并明确其适合的油藏地质条件及转换方式的时机。在风城油田重32井区先后开展了多个先导试验,针对驱泄复合开采的3个阶段,制订了适应的注汽方式、注采参数和调控方法,实现了地层条件下原油黏度大于60×104mPa·s的超稠油油藏蒸汽驱开采,预计最终采收率可从蒸汽吞吐阶段的20%~25%提高至40%~50%。为国内外同类油藏开发提供借鉴经验。  相似文献   

20.
传统的稠油资源有效开发技术面临日益严峻的安全、环保与经济性的挑战。离子液体作为稠油常温有效开采的绿色溶剂具有巨大的应用潜力。本文阐述了离子液体的概念和物理化学性质,简要回顾了离子液体的发展历程。从离子液体作为稠油降黏剂、分散剂、原位改质降黏驱替实验几个方面总结了国内外研究进展与认识。考虑目前研究存在的问题与油田实际,离子液体应以现有热采技术无法经济有效开采的资源及注蒸汽开发后需提高采收率的稠油油藏为应用目标,作为超前储备技术加快研发,尽快从室内推向现场。参36  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号