首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 为了揭示深部软弱地层TBM开挖卸荷围岩变形破坏特性,分析深埋隧道TBM机械开挖卸荷的本质特征为高初始围压下的缓慢准静态卸荷,开展不同卸荷速率下砂质泥岩三轴卸围压试验,研究卸荷速率效应,获取TBM缓慢准静态卸荷围岩变形破坏特性:(1) 缓慢卸荷条件下的峰前应力–应变曲线与常规三轴压缩时较接近,卸荷屈服阶段,岩石产生损伤扩容,侧向变形加速增长,从体积压缩开始转向扩容;(2) 达到峰值强度后,岩石首先沿已贯通的破裂面滑移,发生1~2级规模较小的脆性跌落,随着围压继续缓慢卸除,岩石沿一条斜率较小的近似斜直线发生线性应变软化,且线性应变软化过程中伴随多级微破裂;(3) 岩石变形全过程经历弹性变形、峰前卸荷损伤扩容、峰后脆性跌落、含有多级微破裂的线性应变软化以及残余强度阶段;(4) 缓慢卸荷破坏过程中,岩石发生宏观张剪复合破坏,伴有轴向劈裂裂纹,破裂断面为由许多劈裂裂纹相互贯通形成具有一定宽度的剪切带,剪切带内劈裂的岩片在轴向挤压力和沿剪切面的剪切力共同作用下被挤压和摩擦成许多细颗粒和岩粉。  相似文献   

2.
 在统一强度理论和弹脆塑性模型的基础上,考虑塑性区围岩弹性模量的变化、中间主应力效应、围岩应变软化和剪胀等影响,推导了深埋圆形岩石隧道塑性位移新解。文中的隧道位移新解具有广泛的理论意义,可根据具体工程实际情况,进行多种合理选择。经工程算例分析可知,由塑性区半径相关的弹性模量计算得到的位移处于上、下限之间,反映了隧道开挖卸荷扰动影响的距离变化,更符合隧道变形真实情况,并得出统一强度理论参数和剪胀特性参数对塑性区位移的影响规律。研究结果表明:隧道塑性区位移受中间主应力、围岩剪胀特性和塑性区弹性模量的影响显著,三者相互影响,共同作用。  相似文献   

3.
基于统一强度理论的深埋圆形岩石隧道收敛限制分析   总被引:3,自引:0,他引:3  
基于统一强度理论和非关联流动法则,考虑中间主应力、围岩软化、剪胀和塑性区较小弹性模量等综合影响,推导了深埋圆形岩石隧道围岩特征曲线解析新解。采用较合理的 Vlachopoulos 公式确定隧道纵向位移释放系数,利用收敛限制法对比两种支护起始位置方法下支护压力的差异。研究结果表明:统一强度理论参数对围岩特征曲线和隧道纵向变形曲线的影响显著,考虑中间主应力效应可以更加充分发挥围岩的强度潜能,塑性区弹性模量和剪胀参数对围岩特征曲线的影响显著,不同支护起始位置方法确定的支护压力差异明显。  相似文献   

4.
砂岩高应力峰前卸围压试验研究   总被引:4,自引:1,他引:3  
 对采自重庆鱼嘴的砂岩开展若干围压(最小10 MPa、最大130 MPa)的保持轴压不变峰前卸围压试验,并与同围压下的常规三轴压缩试验结果进行对比分析,研究砂岩卸荷过程中的变形特征、破坏形态、峰值强度与残余强度特性及其扩容参数演化特征。主要研究成果为:(1) 加载路径下,围压增至130 MPa时,应力–应变曲线不出现应力降,可以认为围压130 MPa为砂岩脆–延转化压力。(2) 加载破坏时,偏应力峰值前扩容量相对于峰后较小,但卸荷破坏偏应力峰值前则表现出较大的扩容量。(3) 相同初始应力条件下,卸荷破坏时偏应力变化量比加载破坏时大,证明卸荷应力路径更容易引起砂岩试样的破坏。(4) 相同围压下,卸荷破坏的破裂角大于加载破坏。(5) 卸荷条件下得出的抗剪强度参数c比加载条件下低1.2%,?值则高4.8%;不论卸荷还是加载,残余变形阶段c值都大大减小,?值则变化不大。(6) 围压对扩容的约束作用较显著,围压越大,剪胀角极值越小;卸荷开始后,剪胀角呈剧烈增加态势,迅速达到极值;剪胀角峰值与偏应力峰值不同步,前者滞后于后者;卸荷破坏剪胀角峰值比加载破坏剪胀角峰值大,且达到峰值经历的塑性剪切应变量相对较小,证明卸荷破坏的剪胀性更加显著。这些结论可揭示高应力条件下砂岩的卸荷力学特性,为西部深埋引水隧洞的开挖、支护设计及其稳定性分析提供理论参考。  相似文献   

5.
深埋圆形隧道的开挖支护是与时间相关的复杂力学过程。为了描述这一过程,假设隧道围岩为Burgers体与Drucker-Prager准则组合的黏弹塑性模型。隧道开挖支护完成瞬时围岩表现为弹塑性,此时考虑中主应力的影响,推导出原岩应力和支护反力共同作用下的应力场;随后,假设此应力场保持不变,隧道围岩表现出随时间变化的蠕变性能,进一步推导出深埋圆形隧道考虑剪胀性能的围岩蠕变位移解析式;结合实际算例,分析围岩剪胀角与支护反力对深埋圆形隧道围岩蠕变位移的影响规律。结果表明,剪胀角的变化会对隧道围岩蠕变位移产生较大影响,而支护反力并不能完全控制高地应力作用下的深埋隧道围岩位移随时间的持续增加。  相似文献   

6.
为探讨深埋软岩在不同应力路径下力学性质的差异,对取自丹巴水电站右岸平硐深埋软岩分别进行室内三轴加载试验和不同围压等级、不同卸荷应力水平、不同卸荷速率的恒轴压卸围压试验,并对岩样卸荷破坏面进行微观形貌扫描,分别探讨不同条件下岩样的变形、强度及破坏特征,结果发现:(1)相比三轴加载试验,同等级围压的软岩在卸荷条件下的强度、峰值应变及力学参数都有减小,应力–应变曲线从延性向脆性转换;(2)软岩峰值轴向应变、极限强度、残余强度与卸荷应力水平、卸荷速率均呈正相关性;(3)相比Hoek-Brown经验强度准则,Mohr-Coulomb强度准则能更好地描述软岩强度特性,不同应力路径对抗剪强度参数影响有差异性,卸荷速率对c值的影响更为显著,而卸荷应力水平对?值的影响更为显著;(4)软岩加、卸载条件下都发生剪切破坏,加载时除主裂纹外基本没有衍生微裂纹,卸载时,低卸荷应力水平下岩样破坏后的次生裂纹更发育,且卸荷速率越大岩样破坏程度越强烈;低围压下卸荷破坏时,岩石断面微观形貌演化自由度较高,破坏面粗糙度大。  相似文献   

7.
 不同围压下岩石应变软化与剪胀特性不同,若在隧洞开挖中考虑围岩塑性区域内变化围压影响,其应力–应变场求解方式将区别于既有文献中的传统方法。根据围压影响下应变软化围岩的临界塑性剪切应变变化特征,给出改进的判断围岩是否进入塑性残余区域的规则;引入考虑围压与临界塑性剪切应变的非线性剪胀模型。基于Hoek-Brown屈服准则,根据一定径向应力增量将围岩塑性软化与残余区域分层,采用有限差分法对围岩应力–应变场进行求解;为分析围压对围岩稳定性的影响,根据临界塑性剪切应变与剪胀系数变化与否,设定4种非线性力学模型,深入分析并比较4种力学模型下临界塑性剪切应变、剪胀系数与围岩变形等在塑性软化与残余区域的分布规律。研究结果表明:地质强度指标GSI较小时,考虑围压影响下的围岩应力–应变场与未考虑时差异明显;此时临界塑性剪切应变的减小对开挖边界的围岩剪胀性具一定抑制作用。  相似文献   

8.
基于三轴加、卸荷破坏试验,分析研究辉绿岩卸荷应力状态下的应力、应变及破坏特征。试验结果表明:岩体卸荷破坏时岩石发生回弹变形,脆性特征明显,相比于加载破坏,卸荷破坏更加突然和剧烈;在卸荷过程中,峰值强度随中间主应力的增加有所提高,峰值强度的提高值随中间主应力的提高逐渐减小;在常规三轴压缩试验过程中,岩样破坏峰前的体积变形持续处于压缩状态,表现出的屈服扩容非常小,进入卸荷阶段后,岩石表现出来的扩容现象十分明显,且初始围压越高,卸荷时的扩容量也越大,在接近破坏点时扩容加剧。  相似文献   

9.
扩容现象是岩石变形破坏过程中的重要特征。基于MTS815 Flex Test GT岩石力学试验平台,采用室内三轴卸荷试验和塑性力学理论分析,揭示了大理岩在卸荷条件下的扩容特征及能量变化特征。结果表明,随着围压的增大,岩样的各特征应力随之增大,其扩容特征随之减弱;岩样的扩容参数——扩容指标以及剪胀角均具有围压效应,即扩容指标与围压呈良好的指数型分布,剪胀角与应力比呈线性分布;岩样的卸荷破坏过程中能量特征为初始时以可释放应变能为主到破坏时的耗散能为主,其间的转折点为初始损伤扩容点,同时卸荷条件下的特征能量值与围压具有良好的指数类型关系;在峰值点与残余点处,岩样的能量损伤值与剪胀角以及能量特征值与扩容指标均存在着较好的指数类型关系。  相似文献   

10.
近年来,随着我国地下基础设施的蓬勃发展,进入大规模地修建地铁项目阶段,城市之间的高铁项目如火如荼地建设中,同时采矿工程不断深入和大型水利工程的修建等。在这些建设过程中,常出现开挖后围岩的失稳破坏而发生塌方,特别是深埋条件下具有强度低、大变形特点的围岩失稳问题尤为突出。因此,开挖后软弱围岩稳定性分析及其加固控制对隧道工程设计和安全施工具有重要的意义。目前,对围岩的力学理论及应用研究取得了一定的成果,但是仍然跟不上现有的隧道工程建设,出现了理论研究明显落后于施工经验的局面,导致频频发生工程事故,究其原因是对开挖隧道后围岩变形特性的认识不足,缺乏及时加固控制的意识。本研究针对这些问题,以开挖隧道后围岩的塑性区力学状态和位移变形为基础,采用理论分析、室内试验和数值模拟等相结合的方式系统研究了开挖隧洞后围岩变形破坏的力学本质,揭示了围岩破坏后塑性区内的力学参数和位移的演化过程,探讨了深埋隧道围岩破坏的渐进性过程及锚杆锚固机制。完成的主要研究工作和成果总结如下:(1)从隧洞开挖后周边围岩的应力状态发生内力重分布为出发点,提出了应变软化模型下围岩的弹塑性有限差分解法,比较不同方法计算结果验证该方法的正确性,参数分析结果表明:剪胀特性对隧道洞壁处围岩的位移和塑性区半径影响较大,需要重点考虑岩体的剪胀性;临界软化系数对围岩的塑性区半径和残余区半径的影响较大;H-B屈服准则中"a"强度参数对判断围岩的稳定性具有重要影响,在计算过程中谨慎取值,建议采用广义H-B屈服准则;基于圆筒理论的弹性应变公式,同样适用于开挖隧道后应变软化围岩的稳定性分析中。(2)针对围岩的剪胀性和应变软化随围压变化的特性,根据剪胀性和应变软化是否考虑围压变化,建立不同的剪胀模型组合,探究了不同质量岩体的力学参数对塑性区围压变化的依赖性。研究结果表明,根据不同质量岩体塑性区内的力学参数对围压的依赖性不同,由于质量较好岩体的围压依赖性较低,建议采用剪胀角和临界软化系数均为固定的剪胀模型,但是质量较差岩体的围压依赖性较强,建议采用剪胀角和临界软化系数均随围压变化的剪胀模型。(3)基于统一强度理论,考虑中间主应力对应变软化围岩稳定性的影响,揭示了中间主应力对围岩特征曲线、纵向位移曲线和塑性区内非线性剪胀性的影响规律。结果表明,围岩稳定性研究的力学模型对分析结果影响较大,弹塑性模型未考虑围岩材料强度的弱化,计算结果偏小,不建议采用;中间主应力可以有效抑制塑性区半径和隧道洞壁处位移的发展,充分发挥围岩承载潜力,不考虑中间主应力效应的莫尔库伦强度准则,计算结果保守,可适当考虑围岩的承载潜力,而双剪强度准则计算结果偏小,不建议采用;纵向塑性发展上,考虑中间主应力的围岩在隧道掘进方向上的位移收敛速度增加,可以适当推迟支护结构施加的时间;对于塑性区内剪胀角变化的影响,中间主应力系数和临界软化系数分别体现在剪胀峰值和剪胀角的变化率上。(4)通过室内模型试验和FLAC3D数值模拟,再现了开挖隧洞后毛洞,施加短锚杆和长锚杆工况下IV级围岩的渐进性破坏过程和研究了锚杆对围岩的锚固效应。开挖隧洞后围岩的渐进性破坏顺序是边墙处的围岩首先发生剪切破坏,随后拱腰处剪切破坏,最后拱顶塌陷破坏;施加锚杆后的围岩,特别是拱顶部分围岩由于锚杆的加固作用形成了"加强梁"的作用,使得拱顶所能承受的最大沉降及其破坏荷载显著增加;锚杆的长度需要穿过拱顶塑性松动区(塑性残余区),否则,被锚固的围岩与上部未被锚固的围岩之间存在"分层"现象;锚杆可以显著改变围岩内部径向应力,表现在锚杆末端处围岩的径向应力增加。(5)锚杆通过与围岩之间的相互作用,其末端的锚固段将洞壁附近拉拔段的围岩"紧箍"起来使得洞壁处周边围岩变形减小;锚杆两端剪应力较大,特别是锚杆末端,应防止锚杆末端的剪应力较大超过砂浆与锚杆之间剪切强度而发生脱落;锚杆施作时机对锚杆应力分布和围岩变形控制影响较大,需要及时施作锚杆以达到较好的锚固效果,以免无效锚固;锚杆对具有大变形和弹性模量小的软弱围岩锚固效果较好,而对质量较好、弹性模量较大的硬岩锚固效果并不显著。  相似文献   

11.
依据白鹤滩水电站开展的室内单轴、三轴试验和声发射试验成果,探讨玄武岩峰前特征强度和峰后力学行为。玄武岩启裂强度为0.5~0.6倍峰值强度,损伤强度则与峰值强度接近,峰后具有显著的脆性性质和扩容现象,且峰后行为与围压变化近似非相关。建立Hoek-Brown本构模型中塑性流动系数γ与岩石剪胀角Ψ之间的换算关系,论证模型针对玄武岩峰后脆性、扩容力学行为描述的适用性。工程应用表明,围岩剪胀特性对变形稳定性条件的影响与开挖响应应力路径密切相关。在应力集中区,剪胀特性愈突出、越不利于围岩稳定,而应力松弛区缺乏扩容所需的应力条件,剪胀特性及扩容不成为变形稳定的控制性影响因素。在深埋脆性岩体地下工程实践中,建议针对不同工程部位据此制定差异化支护设计方案。  相似文献   

12.
基于考虑应变软化特性的深埋隧道弹塑性解,采用锚杆中性点理论,系统地分析高地应力软岩隧道短锚杆支护失效机制,并论证高地应力软岩隧道中对锚杆长度进行加长的必要性:一方面增大锚固段的围压以提高黏结强度,另一方面增大锚杆头部和尾部处的围岩位移差以提高锚杆对围压的锚固效用。将高密度支护模式的短锚杆等效为复合岩体,同时将长锚杆对围岩的锚固作用考虑为作用在隧道洞壁处的等效支护力,建立隧道长、短锚杆联合支护力学模型,考虑锚杆和围岩的相互作用,得到长、短锚杆联合支护后的围岩特征曲线。通过对比每延米隧道锚杆用量相同情况下,普通短锚杆支护和长、短锚杆联合支护状态下的围岩特征曲线,说明了长、短锚杆联合支护策略对高地应力软岩隧道变形控制的有效性。该长、短锚杆联合支护力学模型考虑了长锚杆与围岩的相互作用,为高地应力软岩隧道长锚杆支护长度的设计提供了一种计算方法。  相似文献   

13.
高应力、高水压卸荷条件下岩石的非连续性微缺陷演化过程研究对揭示隧道围岩裂纹的起裂孕育、碎胀裂化和峰值破坏,分析围岩稳定性具有重要意义。利用MTS815型程控伺服刚性试验机开展了砂岩在固定围压、不同水压条件下的水力三轴卸荷试验。试验结果表明:岩石变形在卸荷前以压缩为主,变化微小;卸荷后不久开始快速扩容,直至损伤破裂。水力条件下应力–应变曲线上的各个特征应力值比无水压条件下的饱和试样有不同程度地提高,增加了应变能储备,从初始扩容到峰值强度的历时更短,曲线斜率更陡。随着水压的不断增大,各个特征应力值有所减小,表现在起裂条件降低,压缩极限减小,扩容时间提前,表明了砂岩在高水压条件下的脆性特性进一步增强,抵抗变形破坏的能力逐渐降低。通过扩容特征值与扩容点后的体应变关系,求得初始扩容点后的相对扩容应变与变形模量差,建立了多项式回归关系。研究结论揭示了水力作用下砂岩扩容变形行为的强烈性和突发性,可为水–力双场条件下的围岩变形预测及控制提供参考。  相似文献   

14.
为预测承载岩石的应变软化和渗透率演化,基于Gebdykes白云岩的三轴试验结果,分析了围压对岩石弹性模量、破坏应变、峰值强度、强度退化过程、残余强度和剪胀扩容的影响规律。将岩石变形全过程简化为3阶段,使用强度退化指数、脆性模量系数和扩容指数改进FLAC中的SS模型,建立了考虑围压影响的岩石应变软化模型。基于淮南潘一矿煤、凝灰岩、巴里坤砂岩、山西安家岭泥岩的渗透率与体积应变实验数据,建立了基于体积应变增透率的岩石渗透率演化模型,与改进SS模型结合,建立了考虑围压影响的岩石应变软化和渗透率演化模型。利用本文模型分别模拟了安家岭泥岩和Gebdykes白云岩的三轴压缩、渗透率演化和体积扩容过程,结果表明:1体积应变渗透率演化模型能较好地描述体积应变与渗透率的关系;2本文模型能较好地模拟围压对岩石残余强度、峰后强度退化过程和剪胀扩容的影响,能较准确预测承载岩石的渗透率演化。  相似文献   

15.
地下工程开挖卸荷引起的围岩应力重分布将影响弱胶结软岩强度,导致巷道围岩产生不均匀大变形,甚至造成塌方、冒顶等安全事故。以膨润土、风积砂、石膏粉和滑石粉为原料制备类弱胶结软岩试样,利用GDS SSHCA空心圆柱扭剪仪开展主应力定向剪切试验,研究大主应力方向对弱胶结软岩应力–应变曲线、峰值应力(变)和抗剪强度的影响规律,探索主应力方向诱导的弱胶结软岩强度各向异性特征。结果表明:当0°<α <45°时(α为大主应力与竖直方向的夹角),试样产生轴向压应变和剪应变,且随着α的增加,试样轴向应变占比逐渐减小,剪应变占比逐渐增加;当α=45°时,试样以剪应变为主,并伴随体积扩容现象;当45°<α <90°时,试样受侧向挤压产生轴向拉应变与剪应变。当0°≤α≤30°时,峰值剪应力比(τ/p’)max随α的增加逐渐增大;而当30°<α≤90°时,(τ/p’)max则随着α的增加逐渐减小;当α=30°时,(τ/p’)max=0.81,为最大值,这表明软岩具有显著的各向异性特征。基于峰值剪应力比演化特...  相似文献   

16.
基于三维非线性Hoek-Brown强度准则(GZZ强度准则),提出考虑应变软化特性的圆形隧道开挖后围岩非线性力学响应的求解方法。该强度准则不仅继承了传统二维Hoek-Brown准则的优点,并可以考虑中主应力2σ的影响。根据经典弹塑性理论采用数值方法得到考虑应变软化特性的围岩应力、应变、位移及塑性区范围的解答。计算结果表明,传统二维Hoek-Brown强度准则低估了围岩的变形能力。与之相比,采用考虑中主应力影响的GZZ强度准则计算得到的塑性区和软化区半径及围岩应变值更大。围岩最大环向应力θσ位于弹–塑性区边界处,从软化区向流动区过渡过程中围岩的环向应力曲线斜率发生了突变。在塑性软化区内,围岩应变值相对较小而应力值较大;在塑性流动区内,围岩的应力值相对较小,但其应变值非常大,流动区围岩的应变值可达软化区应变值的数十倍。塑性区围岩的软化可以使隧道洞壁附近的围岩应力减小,但会使其变形大大增加。当支护压力较小时,软化作用会使围岩变形增加数倍甚至数十倍。同样,在保证洞壁收敛变形不变的条件下,围岩软化后所需的支护反力会增加数倍甚至数十倍。在高地应力地区,围岩的软化使导致隧道发生大变形破坏的关键原因。在隧道支护结构设计计算时适当考虑围岩的应变软化特征,对于避免隧道发生大变形破坏十分重要。  相似文献   

17.
锦屏水电站大理岩在高应力条件下的卸荷力学特性研究   总被引:3,自引:1,他引:3  
结合锦屏水电站深埋引水隧洞开挖工程,选取该区域典型大理岩,并以隧洞围岩实际应力环境为基础,开展卸围压破坏试验以及卸围压多级破坏试验.研究成果表明,锦屏大理岩在高应力条件下的卸荷力学性质主要表现为:(1)相同初始应力条件下,岩石达到卸荷破坏所需应力变化量比轴向压缩破坏时小,卸荷更容易导致岩石破坏;(2)岩石卸荷开始后侧向变形明显加快,且表现出显著扩容,如果忽略卸荷前岩样变形,则体积变形几乎按照侧向变形的规律增大;(3)卸围压过程中,泊松比近似按照多项式关系增长.变形模量初始变化不显著,屈服前微量围压减少引起变形模量急剧减小;(4)卸荷条件下抗剪强度参数c值比加载条件下低14%,而φ值比加载条件下高23%.这些结论揭示高应力条件下大理岩的卸荷力学特性,为深埋引水隧洞开挖稳定分析提供可靠依据.  相似文献   

18.
为了研究岩石应变软化、剪胀性质、中间主应力和拉压不等特性对围岩松动圈的影响,基于改进双剪统一强度理论,得到了隧道围岩松动圈半径、围岩应力及洞壁位移的解析表达式。通过与已有方法计算结果的对比,验证了该方法的可行性,并进一步分析了中间主应力大小以及软化程度对结果的影响。研究结果表明:(1)随着软化模量的降低,隧道围岩塑性区、松动区(圈)半径以及洞壁位移均逐渐减小;(2)中间主应力大小对隧道围岩弹塑性行为具有一定的影响,随着中间主应力系数b的增大,围岩的切向应力在塑性软化区、破碎区内变大,而在弹性区内减小,围岩的径向应力在3个区域内均增大;(3)隧道洞壁位移随着中间主应力系数b的增大而减小;(4)考虑中间主应力的影响以及围岩软化的程度,能够充分发挥围岩的强度潜能,合理指导隧道布置、支护设计与施工。该结果为隧道围岩松动破裂分析提供了理论依据,具有一定的工程参考价值。  相似文献   

19.
根据建立的岩石剪胀角模型,分析岩石峰值内摩擦角和剪胀角的关系,得出岩石在零围压时的峰值剪胀角小于并近似等于峰值内摩擦角,并假设岩石和岩体的剪胀角遵循相似的变化趋势,结合Hoek-Brown强度准则和GSI岩体分级系统,实现剪胀角模型从完整岩石到岩体的转化。采用程序语言在FLAC3D中编写岩体剪胀角模型程序模块。以加拿大Donkin-Morien隧道为工程实例,研究围压和塑性剪切应变依赖的岩体剪胀对隧道渐进开挖过程中围岩位移的影响,论证恒定的剪胀角值不能准确表达隧道开挖边界附近的岩体位移,而考虑围压和塑性剪切应变为影响因素的岩体剪胀角模型能够合理描述围岩的位移分布,模拟结果与实际测量值具有很好的一致性。研究成果可为岩体非线性力学行为的研究和地下工程岩体的稳定性控制提供理论和实践基础。  相似文献   

20.
为了实现对中密砂工程受荷变形的准确预测,基于岩土材料宏观弹塑性理论框架和三轴试验结果,分析中密砂变形、强度的影响因素和特征,建立适应的屈服准则、硬化法则和流动法则。研究结果表明:(1)中密砂的三轴力学特征对围压较为敏感,随围压增大,应力–应变曲线形态逐渐变化,线性段斜率和峰值强度增大,软化段减弱并消失,体积应变–轴向应变曲线线性段斜率基本无变化,体积剪胀程度减小,高围压试验结束时体积应变相对初始加载时仍处于剪缩状态;(2)考虑中密砂的围压效应和剪切破坏,采用第三主应力和等效塑性剪应变增量表达塑性内变量,峰值点处塑性内变量大于0.5,相对岩石更为滞后;(3)弹性模量随围压呈指数型函数规律增大,泊松比近似为常数;(4)塑性变形过程中最大主应力和最小主应力近似符合线性规律,内摩擦角近似线性增大,黏聚力先增大后减小并符合指数类函数特征;(5)剪胀角在低围压下随塑性变形逐渐减小,高围压下先增大后减小,高围压下剪胀角低于低围压;(6)数值曲线与试验数据吻合度高,可表达中密砂围压效应和塑性演化机制,适用于对应力状态敏感的中密砂的精确计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号