首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simulation of the non‐isothermal resin transfer molding manufacturing process accounting for both the filling and the consolidation stage has been developed. The flow of an exothermally reactive resin through a porous medium has been analyzed with reference to the Darcy law, allowing for the chemorheological properties of the reacting resin. Thermal profile calculations have been extended to a three phase domain, namely the mold, the dry preform and the filled preform. The mold has been included in order to evaluate the thermal inertial effects. The energy balance equation includes the reaction term together with the conductive and convective terms, and particular attention has been devoted to setting the thermal boundary condition at the flow front surface. The moving boundary condition has been derived by a jump equation. The simulation performance has been tested by comparing the predicted temperature profiles with experimental data from literature. Further numerical analysis assessed the relevance of using the jump equation at the flow front position for both filling time and thermal profile determination.  相似文献   

2.
Resin transfer/compression molding (RT/CM) is a two-step process in which resin injection is followed by mold closing. This process can enhance the resin flow speed and the fiber volume fraction, as well as reducing the mold filling time. In this study, a simulation program for the mold filling process during RT/CM was developed using the modified control volume finite element method (CVFEM) along with the fixed grid method. The developed numerical code can predict the resin flow, temperature, pressure, and degree of cure distribution during RT/CM. The compression force required for squeezing the impregnated preform can also be calculated. Experiments were performed for a complicated three-dimensional shell to verify the feasibility of the RT/CM process and the numerical scheme. The compression force and the compression speed were measured. A close agreement was found between the experimental data and the numerical results. The resin front location obtained from a short shot experiment was compared with the numerical prediction. Again, a close agreement was observed. In order to demonstrate the effectiveness of the numerical code, simulations were performed for more complicated process conditions with anisotropic permeability of the preform at higher fiber volume fractions.  相似文献   

3.
A numerical simulation of the mold filling process during resin transfer molding with a heated die was performed using the boundary element method. The governing differential equation with a variable coefficient was rearranged into a system of Poisson equations using the perturbation technique. The boundary element method was employed to solve the resulting equations. The resin viscosity was calculated by introducing markers at the resin inlet and tracing them. As the calculation domain changes because of the proceeding resin front, numerical calculation nodes on the boundary were rearranged for each time step and integration was performed only for the meshes in the calculation domain among the fixed meshes over the mold. Sample calculations were performed for two molds with different shapes. To check the validity of the numerical scheme, the calculated mass flow rate at the resin front was compared with the mass flux at the inlet. Close agreement was observed.  相似文献   

4.
The art of resin transfer molding (RTM) process optimization requires a clear understanding of how the process performance is affected by variations in some important process parameters. In this paper, maximum pressure and mold filling time of the RTM process are considered as characteristics of the process performance to evaluate the process design. The five process parameters taken into consideration are flow rate, fiber volume fraction, number of gates, gate location, and number of vents. An integrated methodology was proposed to investigate the effects of process prameters on maximum pressure and mold filling time and to find the optimum processing conditions. The method combines numerical simulation and design of experiments (DOE) approach and is applied to process design for a cylindrical composite part. Using RTM simulation, a series of numerical experiments were conducted to predict maximum pressure and mold filling time of the RTM process. A half‐fractional factorial design was conducted to identify the significant factors in the RTM process. Furthermore, the empirical models and sensitivity coefficients for maximum pressure and mold filling time were developed. Comparatively close agreements were found among the empirical approximations, numerical simulations, and actual experiments. These results were further utilized to find the optimal processing conditions for the example part.  相似文献   

5.
In the resin transfer molding (RTM) process, preplaced fiber mat is set up in a mold and thermoset resin is injected into the mold. An important issue in RTM processing is minimizing the cycle time without sacrificing part quality or increasing the cost. In this study, a numerical simulation and optimization process for the filling stage was conducted in order to determine the optimum gate locations. The control volume finite element method (CVFEM), modeled as a 2‐dimensional flow, was used in this numerical analysis along with the coordinate transformation method to analyze a complex 3‐dimensional structure. Experiments were performed to monitor the flow front to validate the simulation results. The results of the numerical simulation corresponded with that of the experimental quite well for every single, simultaneous, and sequential injection procedure. The optimization analysis of the sequential injection procedure was performed to minimize fill time. The complex geometry of an automobile bumper core was chosen. A genetic algorithm was used to determine the optimum gate locations in the 3‐step sequential injection case. Taguchi's experimental design method was also used for determining the pressure contribution of each gate. These results could provide the information on the optimum gate locations and injection pressure in each injection step and predict the filling time and flow front.  相似文献   

6.
A review of current approaches in modeling and simulation of the resin transfer molding (RTM) process is presented. The processing technology of RTM is discussed and some available experimental techniques to monitor the process cycle are presented. A master model is proposed for the entire process cycle consisting of mold filling and curing stages. This master model contains the fundamental and constitutive sub‐models for both stages. The key elements of the master model discussed in this study are: flow, heat and mass balance equations for fundamental sub‐models, permeability, cure kinetics, resin viscosity and void formation for constitutive sub‐models. At the end, numerical methods widely used to simulate the filling process are presented and published simulation results of mold filling and process cycle are reviewed.  相似文献   

7.
RTM工艺树脂流动的模拟对于其模具的设计有着重要的价值。就本文而言,通过同步带张紧轮注塑模具的分析,其数值的模拟对于其工艺控制有着较大的促进作用。须知道,数值充模是其工艺成型过程的关键环节,通过树脂渗透过程,逐步地指出其树脂流动的曲线。其计算结果与试验结果是基本一致的。  相似文献   

8.
The manufacture of polymer composites through resin transfer molding (RTM) or structural reaction injection molding (SRIM) involves the impregnation of a fibrous reinforcement in a mold cavity with a reactive polymer resin. The design of RTM and SRIM operations requires an understanding of the various parameters, such as materials properties, mold geometry, and mold filling conditions, that affect the resin impregnation process. Modeling provides a potential tool for analyzing the relationships among the important parameters. The present work provides the physical model and finite element formulations for simulating the mold filling stage. Resin flow through the fibers is modeled using two-dimensional Darcian flow. Simultaneous resin reaction and heat transfer among resin, mold walls, and fibers are considered in the model. The proposed technique emphasizes the use of the least squares finite element method to solve the convection dominated mass and energy equations for the resin. Excellent numerical stability of the proposed technique provides a powerful numerical method for the modeling of polymer processing systems characterized by convection dominated transport equations. Results from example numerical studies for SRIM of polyurethane/glass fiber composites were presented to illustrate the application of the proposed model and numerical scheme.  相似文献   

9.
In this work, a computer model has been developed to investigate the effect of reinforcement thickness variation and edge effect on infiltration and mold filling in resin transfer molding (RTM) process. The developed code is able to predict the flow front location of the resin, the pressure, and the temperature distribution at each time step in a mold with complex geometries. It can also optimize the positioning of injection ports and vents. The filling stage is simulated in a full two‐dimensional space by using control volume/finite element method CV/FEM and based upon an appropriate filling algorithm. Results show that the injection time as well as flow front progression depends on the edge effect, the variation of reinforcement thickness, and the position of injection ports; this highlights that the inclusion of these effects in RTM simulation is of definite need for the better prediction and optimization of the process parameters. The validity of our developed model is evaluated in comparison with analytical solutions for simple geometries, and excellent agreements are observed. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

10.
Liquid composite molding (LCM) techniques are innovative manufacturing processes for processing fiber reinforced polymer parts used e.g. for aerospace structures. Thereby the reinforcing material is placed in a mold and infiltrated with a low viscosity polymer matrix. Increasing production rates as well as part complexity lead to high production risks such as air inclusions or incomplete mold filling. Numerical mold filling simulations are promising tools enabling the composite manufacturing engineer to detect dry spots in the mold and find the optimal positions of the resin entry and ventilation system at an early process development stage. Today, different numerical models and software packages are available for modeling the flow through the reinforcing structure for visualization of the flow behavior. The goal of this study is the systematic comparison of two different software packages, namely PAM‐RTM® and OpenFOAM. Both software tools are operated as they are commonly foreseen. Real world experiments under real process conditions are the basis for the assessment of the numerical predictions. The resin transfer molding (RTM) experiments are executed in a tool with a transparent upper mold half in order to see the flow front advancement. POLYM. COMPOS., 37:2782–2793, 2016. © 2015 Society of Plastics Engineers  相似文献   

11.
A full 3D finite element analysis system has been developed to simulate a Powder Injection Molding (PIM) filling process for general three‐dimensional parts. The most important features of the analysis system developed in this study are i) to incorporate the slip phenomena, the most notable rheological characteristics of PIM feedstock, into the finite element formulation based on a nonlinear penalty‐like parameter and ii) to simulate the transient flow during the filling process with a predetermined finite element mesh with the help of a volume fill factor and a melt front smoothing scheme. The treatment of the nonlinear slip boundary condition was successfully validated via a steady state pipe flow. For the purpose of comparisons, not only the numerical simulations but also experimental short‐shot experiments were performed with two 3D mold geometries using two typical materials of slip and no‐slip cases. The good agreements between the numerical and experimental results indicate that the melt front tracking scheme successfully simulates the transient filling process.  相似文献   

12.
Composite manufacturing by Liquid Composite Molding (LCM) processes such as Resin Transfer Molding involve the impregnation of a net‐shape fiber reinforcing perform a mold cavity by a polymeric resin. The success of the process and part manufacture depends on the complete impregnation of the dry fiber preform. Race tracking refers to the common phenomenon occurring near corners, bends, airgaps and other geometrical complexities involving sharp curvatures within a mold cavity creating fiber free and highly porous regions. These regions provide paths of low flow resistance to the resin filling the mold, and may drastically affect flow front advancement, injection and mold pressures. While racetracking has traditionally been viewed as an unwanted effect, pre‐determined racetracking due to flow channels can be used to enhance the mold filling process. Advantages obtained through controlled use of racetracking include, reduction of injection and mold pressures required to fill a mold, for constant flow rate injection, or shorter mold filling times for constant pressure injection. Flow channels may also allow for the resin to be channeled to areas of the mold that need to be filled early in the process. Modeling and integration of the flow channel effects in the available LCM flow simulations based on Darcian flow equations require the determination of equivalent permeabilities to define the resistance to flow through well‐defined flow channels. These permeabilities can then be applied directly within existing LCM flow simulations. The present work experimentally investigates mold filling during resin transfer molding in the presence of flow channels within a simple mold configuration. Experimental flow frot and pressure data measurements are employed to experimentally validate and demonstrate the positive effect of flow channels. Transient flow progression and pressure data obtained during the experiments are employed to investigate and validate the analytical predictions of equivalent permeability for a rectangular flow channel. Both experimental data and numerical simulations are presented to validate and characterize the equivalent permeability model and approach, while demonstrating the role of flow channels in reducing the injection and mold pressures and redistributing the flow.  相似文献   

13.
A numerical simulation of the mold filling process during resin transfer molding (RTM) was performed using the boundary element method (BEM). Experimental verification was also done. Darcy's law for anisotropic porous media was employed along with mass conservation to construct the governing differential equation. The resulting potential problem was solved with the boundary element technique. As the calculation domain changed due to the proceeding resin front, boundary nodes were rearranged for each time step. The node which goes out of the calculation domain as time progresses was relocated at the intersection between the solid boundary and the line drawn between the node at previous and at current time steps. Results showed good agreement with data for a rectangular mold. To evaluate further the validity of the model, the area velocity of the resin-impregnated region during mold filling was calculated. The area velocity thus calculated was compared with the corresponding resin inlet velocity to check the mass conservation. A close agreement was observed, which renders confidence in the resin front proceeding algorithm. Numerical calculations were also performed for complicated geometries to illustrate the effectiveness of the current method.  相似文献   

14.
Finite element modeling and experimental investigation of mold filling in resin transfer molding (RTM) have been performed. Flow experiments in the molds were performed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids with viscosity of 50 and 100 centistoke as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeability was determined experimentally for the five-harness and eight-harness woven mats. Resin flow through fiber mats was modeled as flow through porous media. Pressure distributions inside both types of molds were also determined numerically. In the case of resin flow into rectangular molds, numerical results agreed well with experimental measurements. Comparison between the experimental and numerical results of the resin front position indicated the importance of edge effects in resin flow behavior in small cavities with larger boundary areas. Reducing the resistance to resin flow at the edge region in the numerical model allowed for good agreement between the numerical simulation and the physical observations of the resin front position and mold filling time.  相似文献   

15.
A model has been developed for analyzing resin impregnation of fiber tows during resin transfer molding of bi-directional nonwoven fiber performs. The model is based on the existence of two main regions of resin flow: the macropore space formed among fiber tows and the micropore space formed among individual fiber filaments within a tow. The large difference in permeability between these two regions of flow leads to the potential for void formation during resin transfer molding. The model was formulated for both constant flow rate and constant pressure mold filling. For ambient pressure mold filling, the model predicts a difference in the size of the voids and distribution between axial tows (oriented along the flow direction) and transverse tows (oriented in the transverse direction). When vacuum is imposed on the mold, the model predicts the same resin impregnation behavior for both axial and transverse tows. Furthermore, given sufficient time, voids generated under vacuum mold filling will eventually collapse because of the absence of an opposing internal void pressure. In addition to insights on void formation, the model also provides a basis for the study of the relationship between resin transfer molding parameters and the resin impregnation process.  相似文献   

16.
Yanyu Ding  Yuxi Jia 《Polymer Composites》2015,36(11):2008-2016
The mold filling time and resin flow front shape are of fundamental importance during resin transfer molding (RTM) processes, because the former influences productivity and the latter affects composites quality. In this article, considering both edge effect and curing reaction characteristics of the resin flow process, the sensitivity analysis method is introduced to investigate the sensitive degree of mold filling time and resin flow front shape to the key material and processing parameters. The function employed to describe the resin flow front shape is defined, and the mathematical relationships of the key physical parameters, such as fluid pressure sensitivity, flow velocity sensitivity, mold filling time sensitivity, and resin flow front shape sensitivity, are established simultaneously. In addition, then the resin infiltration process is simulated by means of a semi‐implicit iterative calculation method and the finite volume method. The simulated results are in agreement with the analytical ones. The results show that under constant injection velocity conditions, both the change in the resin temperature and the alteration of the inlet velocity hardly affect the resin flow front shape, whereas the influence of edge permeability on the resin flow front shape is the greatest. This study is helpful for designing and optimizing RTM processes. POLYM. COMPOS., 36:2008–2016, 2015. © 2014 Society of Plastics Engineer  相似文献   

17.
This work presents the results of numerical simulation and experimental visualization of the mold filling process in resin injection molding with preplaced fiber mats. The mold filling experiments were conducted with various mat stacks consisting of continuous random glass fiber mats and bidirectional stitched glass fiber mats. The use of two different mat types in the mat stack created porosity and permeability variations. The effect of these permeability variations was studied by taking flow pressure measurements and observing the progress of the flow front of a non-reactive fluid filling a clear acrylic mold that contained the reinforcement mat stack. Numerical simulation corresponding to each experiment was also carried out. The numerical results were compared to the experimental measurements.  相似文献   

18.
This study investigates the effect of 3 and 5 wt% nanoclay (Cloisite 30B) addition on mold filling time and performance of continuous glass filament mat reinforced unsaturated polyester (UP) resin composites made by vacuum infusion process. X‐ray diffraction and transmission electron microscopy analysis as well as viscosity change in liquid state resin confirmed intercalation and exfoliation of the nanoclay in the resin system. The result shows mold filling time increase of 3 and 2.4 times for the samples containing 3 and 5 wt% nanoclay, respectively, compared with nanoclay‐free sample. This increase in mold filling time is directly attributed to the increase in resin viscosity. Filtration of nanoclay particles were observed in the resin flow direction. Result showed 8 and 14% filtration of nanoclay in flow direction for the samples with 3 and 5 wt% nanoclay content, respectively. Nanoclay containing specimens prepared from near resin entry port area showed relatively higher flexural and tensile modulus and as well as strength compared to specimens prepared from area close to vacuum port area. The result showed best performance for 3 wt% nanoclay containing specimen. However, impact strength decreased about 6.1 and 10.8% for 3 and 5% nanoclay, respectively. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
The mold filling process has been modeled for the injection molding of different polymer-based binders and powder-polymer mixtures. It is essentially a two dimensional non-Newtonian fluid flow analysis in a non-isothermal environment. A complete analysis is accomplished by combining a finite element method and control volume technique to describe an increment of flow front movement, whereas a finite difference method is used to solve the energy equation to characterize the temperature distribution. Numerical results are compared to exact solutions for a circular ring cavity using a power law fluid model under an isothermal condition. Comparison of computed results against published data for a simple circular disk shows good agreement between the two analysis methods. After making selected comparison studies, it is demonstrated that the filling process in Powder Injection Modeling with different combination of powder-polymer mixtures is markedly dependent on specific combinations of powder; and polymer based binders. Computed flow front results for a rectangular cavity also compared favorably against the data for a power law fluid model under non-isothermal conditions.  相似文献   

20.
In Resin Transfer Molding a fiber preform is placed in a mold, the mold is closed and a thermoset polymeric resin is injected through gates into the mold to saturate the preform completely. The resin flow rate is controlled by actuators, which are usually injection machines. When one places the preform into the mold, the gap between the preform and the mold walls can create race tracking channels and provide the resin flow paths that can severely influence the flow patterns and drastically change the flow history. As this gap is unavoidable and not reproducible, one could have different strengths of this disturbance from one part to the next, some of which will cause incomplete saturation of the fibers by the resin. Hence, an active control of the filling stage is necessary that can detect and characterize the race tracking and provide the control action to redirect the flow with the aim to saturate the preform without resin starved regions (macro voids or dry spots). A methodology is proposed that intelligently places sensors in the mold to detect the resin arrival times at these locations. This information is used to determine and quantify the strength of the disturbance and used as an input parameter for the actuators to redirect the flow. This paper demonstrates this methodology on a simple mold configuration, and outlines how this technique can be generalized to any mold geometry or disturbance set in an automated RTM environment. Numerical simulations are used to establish the control methodologies, and all of the efforts are confirmed in a laboratory setting. The proposed methodology should prove useful in increasing the yield of Resin Transfer Molded parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号