共查询到20条相似文献,搜索用时 15 毫秒
1.
A model has developed for simulating isothermal mold filling during resin transfer molding (RTM) of polymeric composites. The model takes into account the anisotropic nature of the fibrous reinforcement and change in viscosity of the polymer resin as a result of chemical reaction. The flow of impregnating resin through the fibrous network is described in terms of Darcy's law. The differential equations in the model are solved numerically using the finite element technique. The Galerkin finite element method is used for obtaining the pressure distribution. A characteristics based method is used to solve the non-linear hyperbolic mass balance equation. The finite element formulation facilitates computations involving the motion of the polymer resin front characterized by a free surface flow phenomenon. 相似文献
2.
Vincenza Antonucci Michele Giordano Luigi Nicolais Gandolfo Di Vita 《Polymer Engineering and Science》2000,40(12):2471-2481
A simulation of the non‐isothermal resin transfer molding manufacturing process accounting for both the filling and the consolidation stage has been developed. The flow of an exothermally reactive resin through a porous medium has been analyzed with reference to the Darcy law, allowing for the chemorheological properties of the reacting resin. Thermal profile calculations have been extended to a three phase domain, namely the mold, the dry preform and the filled preform. The mold has been included in order to evaluate the thermal inertial effects. The energy balance equation includes the reaction term together with the conductive and convective terms, and particular attention has been devoted to setting the thermal boundary condition at the flow front surface. The moving boundary condition has been derived by a jump equation. The simulation performance has been tested by comparing the predicted temperature profiles with experimental data from literature. Further numerical analysis assessed the relevance of using the jump equation at the flow front position for both filling time and thermal profile determination. 相似文献
3.
In this work, a computer model has been developed to investigate the effect of reinforcement thickness variation and edge effect on infiltration and mold filling in resin transfer molding (RTM) process. The developed code is able to predict the flow front location of the resin, the pressure, and the temperature distribution at each time step in a mold with complex geometries. It can also optimize the positioning of injection ports and vents. The filling stage is simulated in a full two‐dimensional space by using control volume/finite element method CV/FEM and based upon an appropriate filling algorithm. Results show that the injection time as well as flow front progression depends on the edge effect, the variation of reinforcement thickness, and the position of injection ports; this highlights that the inclusion of these effects in RTM simulation is of definite need for the better prediction and optimization of the process parameters. The validity of our developed model is evaluated in comparison with analytical solutions for simple geometries, and excellent agreements are observed. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers 相似文献
4.
Resin infusion was modeled and analytic solutions were obtained for vacuum assisted resin transfer molding (VARTM). Compaction behavior of the fiber preform was examined experimentally and the influence of compressibility of the preform on the resin infusion was investigated mathematically. Flow front advancement through the preform was predicted by the analytic model proposed in the present study. The model provided pressure and thickness distributions of the region impregnated by the resin. For verification of the analytic solutions, a resin infusion experiment and a mold filling simulation for VARTM were performed and compared with the analytic ones. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers. 相似文献
5.
A numerical simulation of the mold filling process during resin transfer molding (RTM) was performed using the boundary element method (BEM). Experimental verification was also done. Darcy's law for anisotropic porous media was employed along with mass conservation to construct the governing differential equation. The resulting potential problem was solved with the boundary element technique. As the calculation domain changed due to the proceeding resin front, boundary nodes were rearranged for each time step. The node which goes out of the calculation domain as time progresses was relocated at the intersection between the solid boundary and the line drawn between the node at previous and at current time steps. Results showed good agreement with data for a rectangular mold. To evaluate further the validity of the model, the area velocity of the resin-impregnated region during mold filling was calculated. The area velocity thus calculated was compared with the corresponding resin inlet velocity to check the mass conservation. A close agreement was observed, which renders confidence in the resin front proceeding algorithm. Numerical calculations were also performed for complicated geometries to illustrate the effectiveness of the current method. 相似文献
6.
Frederick R. Phelan 《Polymer Composites》1997,18(4):460-476
A simulation based on Darcy's law for modeling mold filling in resin transfer molding has been developed. The simulation uses a new Flow Analysis Network (FAN) technique to predict and track the movement of the free-surface, and a finite element method to solve the governing equation set for each successive flow front location. A variety of element types have been incorporated into the simulation, enabling modeling of flow for a variety of conditions of industrial interest including runner distribution systems, “2.5-D” shell geometries, and fully 3-D flows. The FAN technique developed here has two main benefits: it enables conservation of mass, even for highly distorted element shapes, and also, allows elements of different dimension to be simultaneously used in a single simulation. At present, the simulation predicts flow front position as a function of time, and the pressure distribution during the filling process for a number of inlet gating conditions. A number of examples are presented and discussed to highlight the simulation's capabilities, including the filling of a complex automotive part. 相似文献
7.
In this paper, the unsaturated flow encountered in the woven or stitched fiber mats used in RTM is simulated using an adaptation of the Finite Element Method/Control Volume (FEM/CV) technique. The movement of resin through such fiber mats is modeled as flow through dual scale porous media and the mass balance in such media creates a sink term in the equation of continuity of the macroscopic flows. Combining this equation with Darcy's law leads to a non-homogeneous non-linear elliptic partial differential equation for pressure that is solved iteratively. First the simulation is used to study simple flows encountered during the characterization of preforms, such as the constant injection pressure 1-D flow and the constant flow rate radial injection flow. Previously observed experimental results of relatively flatter pressure histories for the latter type of flows in wove fiber mats are replicated, both numerically and analytically, by the pressure equation with the sink term. A quantity called pore volume ratio is shown to play an important role in such flows. Finally, the unsaturated flow in a typical RTM mold, packed with woven fiber mats, is simulated numerically, and inlet pressures, fill times, and mat saturation are studied. 相似文献
8.
High speed injection has been widely used in resin transfer molding (RTM), which improves manufacturing efficiency. This sometimes leads to excessive pressure within the mold, resulting in fiber destruction and mold deformation. Heating the mold and injection resin reduces the viscosity of resin, leading to influence on mold internal pressure. Selection of optimal mold and injection temperature for effective reduction of mold internal pressure has become a source of concern in the polymer industry. This article presents an outlook relationship between mold temperature, injection temperature, and mold internal pressure. It also showcases a temperature selection method angle to addressing this issue. The “FLUENT” software has been secondarily developed that gives an insight in using the three-dimensional nonisothermal RTM simulation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47492. 相似文献
9.
Resin transfer/compression molding (RT/CM) is a two-step process in which resin injection is followed by mold closing. This process can enhance the resin flow speed and the fiber volume fraction, as well as reducing the mold filling time. In this study, a simulation program for the mold filling process during RT/CM was developed using the modified control volume finite element method (CVFEM) along with the fixed grid method. The developed numerical code can predict the resin flow, temperature, pressure, and degree of cure distribution during RT/CM. The compression force required for squeezing the impregnated preform can also be calculated. Experiments were performed for a complicated three-dimensional shell to verify the feasibility of the RT/CM process and the numerical scheme. The compression force and the compression speed were measured. A close agreement was found between the experimental data and the numerical results. The resin front location obtained from a short shot experiment was compared with the numerical prediction. Again, a close agreement was observed. In order to demonstrate the effectiveness of the numerical code, simulations were performed for more complicated process conditions with anisotropic permeability of the preform at higher fiber volume fractions. 相似文献
10.
Renliang Chen Chensong Dong Zhiyong Liang Chuck Zhang Ben Wang 《Polymer Composites》2004,25(2):146-164
Vacuum assisted resin transfer molding (VARTM) offers numerous advantages over traditional resin transfer molding, such as lower tooling costs, shorter mold filling time and better scalability for large structures. In the VARTM process, complete filling of the mold with adequate wet-out of the fibrous preform has a critical impact on the process efficiency and product quality. Simulation is a powerful tool for understanding the resin flow in the VARTM process. However, conventional three-dimensional Control Volume/Finite Element Method (CV/FEM) based simulation models often require extensive computations, and their application to process modeling of large part fabrication is limited. This paper introduces a new approach to model the flow in the VARTM process based on the concept of equivalent permeability to significantly reduce computation time for VARTM flow simulation of large parts. The equivalent permeability model of high permeable medium (HPM) proposed in the study can significantly increase convergence efficiency of simulation by properly adjusting the aspect ratio of HPM elements. The equivalent permeability model of flow channel can simplify the computational model of the CV/FEM simulation for VARTM processes. This new modeling technique was validated by the results from conventional 3D computational methods and experiments. The model was further validated with a case study of an automobile hood component fabrication. The flow simulation results of the equivalent permeability models were in agreement with those from experiments. The results indicate that the computational time required by this new approach was greatly reduced compared to that by the conventional 3D CV/FEM simulation model, while maintaining the accuracy, of filling time and flow pattern. This approach makes the flow simulation of large VARTM parts with 3D CV/FEM method computationally feasible and may help broaden the application base of the process simulation. Polym. Compos. 25:146–164, 2004. © 2004 Society of Plastics Engineers. 相似文献
11.
Aouatif Saad Adil Echchelh Mohamed Hattabi Mohammed El Ganaoui 《Polymer Composites》2011,32(6):857-868
The numerical simulation of mass and heat transfer model for the curing stage of the resin transfer molding (RTM) process is known as a useful method to analyze the process before the mold is actually built. Despite the intense interest in the modeling and simulation of this process, the relevant work is currently limited to development of flow models during filling stage. Optimization of non‐isothermal mold filling simulation time without losing the efficiency remains an important challenge in RTM process. These were some reasons that motivate our work; namely the interested on the amelioration of the performance of RTM simulation code in term of execution time and memory space occupation. Our approach is accomplished in two steps; first by the modification of the control volume/ finite element method (CV/FEM) and second by the implementation in the modified code of an adapted conjugate gradient algorithm to the compressed sparse row storage scheme. The validity of our approach is evaluated with analytical results and excellent agreement was found. The results show that our optimization strategy leads to maximum reduction in time and space memory. This allows one to deal with problems with great and complex dimensions mostly encountered in RTM application field, without interesting in the constraint of space or time. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers 相似文献
12.
In the present study of resin transfer molding, an effective gap located between the side wall and the fiber mats is proposed. The concept of the effective gap leads to a permeable boundary condition on the interface between the fiber mats and the side wall. The porosity is no longer assumed to be a constant in the whole domain. Results show that the effective gap concept can explain the phenomena of edge effects reasonably. In our model, the filling process is simulated by the body-fitted finite element method and the limitation of the time increment for the quasi-steady state process is discussed in detail. 相似文献
13.
This study investigates the components of a constant injection rate resin transfer molding system and discusses critical issues of each component from an experimental view. Also included are temperature and pressure data of independently designed mold flow experiments performed at The Dow Chemical Company. The experiments in this study included isothermal one-dimensional flow with line gating and end venting, isothermal two-dimensional flow with converging flow and center venting, and two different resin systems. Accurate and precise permeability measurements of the fiber preform continue to be the core of the issue. Deformation, contour, or overlap of the fiber preform can cause minor variation in local permeability, which, when compared with the bulk permeability, can vary the injection pressures up to an order of magnitude. Further, local dimensional changes in the fiber preform (i.e., overlap, contour, or edge-effect) can form a channel for racetracking of the resin during injection. The inability to accurately predict a priori the extent of racetracking reduces modeling efforts to a demonstration of the flow trend. 相似文献
14.
As vacuum‐assisted resin transfer molding (VARTM) is being increasingly used in aerospace applications, the thickness gradient and variation issues are gaining more attention. Typically, thickness gradient and variations result from the infusion pressure gradient during the process and material variations. Pressure gradient is the driving force for resin flow and the main source of thickness variation. After infusion, an amount of pressure gradient is frozen into the preform, which primarily contributes to the thickness variation. This study investigates the mechanism of the thickness variation dynamic change during the infusion and relaxing/curing processes. A numerical model was developed to track the thickness change of the bagging film free surface. A time‐dependent permeability model as a function of compaction pressure was incorporated into an existing resin transfer molding (RTM) code for obtaining the initial conditions for relaxing/curing process. Control volume (CV) and volume of fluid (VOF) methods were combined to solve the free surface problem. Experiments were conducted to verify the simulation results. The proposed model was illustrated with a relatively complex part. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers 相似文献
15.
Resin transfer molding (RTM) of advanced fiber architecture materials promises to be a cost effective process for obtaining composite parts with exceptional strength. However there are a larger number of material processing parameters that must be observed, known, and/or controlled during the resin transfer molding process. These include the viscosity both during impregnation and cure. In-situ sensors which can observe these processing properties within the RTM tool during the fabrication process are essential. This paper will discuss recent work on the use of frequency dependent electromagnetic sensing (FDMS) techniques to monitor these properties in the RTM tool. Our objective is to use these sensing techniques to address problems of RTM scaleup for large complex parts and to develop a closed loop, intelligent, sensor controlled RTM fabrication process. 相似文献
16.
The curing step in resin transfer molding process involves heat transfer coupled with the curing reaction of thermoset resin. In order to examine the curing behavior under a specified cure cycle in the resin transfer molding process, numerical simulations are carried out by three-dimensional finite elements method. An experimental study for isothermal cure kinetics of epoxy resin is conducted by using differential scanning calorimetry. Kinetic parameters based on the modified Kamal model are determined from the calorimetric data for the epoxy system, and by using these parameters, numerical simulations are performed for a hat-shaped mold. It is found from the simulation results that the temperature profile and the degree of cure are well predicted for the region inside the mold. This numerical study can provide a systematic tool in the curing process to find an optimum cure cycle and a uniform distribution of the degree of cure. 相似文献
17.
The virtually developed resin transfer molding (RTM) manufacturing process for the large and complex composite part can be validated easily with the trial experiments on the scaled down mold. The scaling down strategy was developed using Darcy's law from the comparisons of mold fill time and mold fill pattern between full‐scale product and scaled down prototype. From the analysis, it was found that the injection pressure used in the scaled down mold should be the full‐scale injection pressure by the times of square of geometrical scale down factor, provided the identical injection strategy and raw material parameters were applied on both the scales. In this work, the RTM process was developed using process simulations for a large and complex high‐speed train cab front and it was validated by conducting experiments using a geometrically scaled down mold. The injection pressure as per the scaling down strategy was imposed on the scale downed high‐speed train cab front mold and a very close agreement was observed between the flow fronts of experimental and simulated results, which validates the scaling down strategy and the virtually developed RTM process for the full‐scale product. POLYM. COMPOS., 35:1683–1689, 2014. © 2013 Society of Plastics Engineers 相似文献
18.
The influence of different process variables on the void content in resin transfer modling (RTM) has been investigated experimentally. The moldings were made in a flat mold filled by a parallel flow from one edge of the laminate to the other. The viods were found concentrated in a narrow region close to the ventilation side of the laminate. The void volume fraction in this region was almost constant and dropped over a short distance to basically no voids in the rest of the laminate. Micrographs from cross sections in different directions revealed that the voids were of two different types, long cylinderical bubbles inside the fiber bundles. An efficient way of reducing the void content was to use vacuum assistance during mold filling. This technique was benefical both for the magnitude of the void content and for the extent of the void region. The void content with the highest level of vacuum assistance (≈︁ 1 kPa absolute pressure), was practically negligible. Strong indications for void generation by mechanical entrapment at the flow front was found. The lowering of the void content with vacuum assistance can be interpreted as aresult of compression of voids when the vacuum is released and a higher mobility of voids created at a lower pressure. 相似文献
19.
In co-injection molding, the properties and distribution of polymers will affect the application of products. The focus of this work is to investigate the effect of molding parameters on the skin/core material distribution based on three-dimensional (3-D) flow and heat transfer model for the sequential co-injection molding process, and the flow behaviors and material distributions of skin and core melts inside a slightly complex cavity (dog-bone shaped cavity) are predicted numerically. The governing equations of fluids in mold are solved by finite volume method and Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm on collocated meshes, and the domain extension technique is employed in numerical method for this cavity to assure that the numerical algorithm is implemented successfully. The level set transport equation which is used to trace the free surfaces in co-injection molding is discretized and solved by the 5th-order Weighted Essentially Non-Oscillatory (WENO) scheme in space and 3rd-order Total Variation Diminishing Runger-Kutta (TVD-R-K) scheme in time respectively. Numerical simulations are conducted under various volume fraction of core melt, skin and core melt temperatures, skin and core melt flow rates. The predicted results of material distribution in length, width and thickness directions are in close agreement with the experimental results, which indicate that volume fraction of core melt, core melt temperature and core melt flow rate are principal factors that have a significant influence on material distribution. Numerical results demonstrate the effectiveness of the 3-D model and the corresponding numerical methods in this work, which can be used to predict the melt flow behaviors and material distribution in the process of sequential co-injection molding. 相似文献
20.
The transport of single drops through a hexagonal cylinder array is used to study the void movement and deformation in a resin transfer molding process. A transparent flow cell is used to visualize the transport of voids through a porous media model. Experiments are conducted with nearly inviscid water drops and viscous glycerol drops with drop sizes ranging from 0.4 to 80 μl, and with both a Newtonian fluid and Boger fluid with average resin velocities ranging from 0.011 to 0.140 cm/s. Two critical capillary numbers, which determine the breakup (Cab) and mobilization (Ca*) of drops, are measured to better understand the flow dynamics of voids. As demonstrated by the experiments, there is a critical drop size, below or above which a quite different flow behavior is observed. Such a transition is analyzed with consideration of the geometry characters in the flow field. Results expand the former studies in this area to a significantly larger range of drop sizes and capillary numbers. Particle Tracking Velocimetry is also used to quantify the local velocity, shear stress, extensional stress and energy dissipation in the flow field. Polym. Compos. 25:417–432, 2004. © 2004 Society of Plastics Engineers. 相似文献