首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The usefulness of anti-inflammatory drugs as an adjunct therapy to improve outcomes in COVID-19 patients is intensely discussed in this paper. Willow bark (Salix cortex) has been used for centuries to relieve pain, inflammation, and fever. Its main active ingredient, salicin, is metabolized in the human body into salicylic acid, the precursor of the commonly used pain drug acetylsalicylic acid (ASA). Here, we report on the in vitro anti-inflammatory efficacy of two methanolic Salix extracts, standardized to phenolic compounds, in comparison to ASA in the context of a SARS-CoV-2 peptide challenge. Using SARS-CoV-2 peptide/IL-1β- or LPS-activated human PBMCs and an inflammatory intestinal Caco-2/HT29-MTX co-culture, Salix extracts, and ASA concentration-dependently suppressed prostaglandin E2 (PGE2), a principal mediator of inflammation. The inhibition of COX-2 enzyme activity, but not protein expression was observed for ASA and one Salix extract. In activated PBMCs, the suppression of relevant cytokines (i.e., IL-6, IL-1β, and IL-10) was seen for both Salix extracts. The anti-inflammatory capacity of Salix extracts was still retained after transepithelial passage and liver cell metabolism in an advanced co-culture model system consisting of intestinal Caco-2/HT29-MTX cells and differentiated hepatocyte-like HepaRG cells. Taken together, our in vitro data suggest that Salix extracts might present an additional anti-inflammatory treatment option in the context of SARS-CoV-2 peptides challenge; however, more confirmatory data are needed.  相似文献   

2.
Salix sericea (Marsh.) (Salicaceae) seedlings were used to investigate phytochemical induction of phenolic glycosides following beetle herbivory. Seven-week-old full-sibling seedlings were subjected to one of three damage treatments: Plagiodera versicolora adults, P. versicolora larvae, or Calligrapha multipunctata bigsbyana adults. Salicylate concentrations were measured locally (within damaged leaves) and systemically (above and below damaged leaves) 4 d later. Herbivory caused differential salicylate induction; 2′-cinnamoylsalicortin was induced, whereas salicortin was not. The induction of 2′-cinnamoylsalicortin was not specific with regard to the species or developmental stage of beetle tested but did vary with leaf age: induction occurred in the younger undamaged leaves but not in the damaged leaves or in the older undamaged leaves. The amount of leaf area consumed had no detectable effect on induction, indicating an “all-or-none” response triggered by even small amounts of herbivory. Locally, herbivory caused a decrease in salicortin concentrations, probably because of degradation within the damaged leaves. These results suggest a specific but generalized induced response to these leaf-feeding beetles.  相似文献   

3.
Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether peripheral sensory neurons are linked to the cellular plasticity in the dorsal root ganglia (DRG) and are critical for OA hyperalgesia. Sensory neuron-specific deletion of TrkA was achieved by tamoxifen injection in 4-week-old TrkAfl/fl;NaV1.8CreERT2 (Ntrk1 fl/fl;Scn10aCreERT2) mice. OA was induced by partial medial meniscectomy (PMM) in 12-week-old mice, and OA-pain-related behavior was analyzed for 12 weeks followed by comprehensive histopathological examinations. OA-associated joint pain was markedly improved without cartilage protection in sensory-neuron-specific conditional TrkA knock-out (cKO) mice. Alleviated hyperalgesia was associated with suppression of the NGF/TrkA pathway and reduced angiogenesis in fibroblast-like synovial cells. Elevated pain transmitters in the DRG of OA-induced mice were significantly diminished in sensory-neuron-specific TrkA cKO and global TrkA cKO mice. Spinal glial activity and brain-derived neurotropic factor (BDNF) were significantly increased in OA-induced mice but were substantially eliminated by sensory-neuron-specific deletion. Our results suggest that augmentation of NGF/TrkA signaling in the joint synovium and the peripheral sensory neurons facilitate pro-nociception and centralized pain sensitization.  相似文献   

4.
Biomedical data obtained during cell experiments, laboratory animal research, or human studies often display a complex distribution. Statistical identification of subgroups in research data poses an analytical challenge. Here were introduce an interactive R-based bioinformatics tool, called “AdaptGauss”. It enables a valid identification of a biologically-meaningful multimodal structure in the data by fitting a Gaussian mixture model (GMM) to the data. The interface allows a supervised selection of the number of subgroups. This enables the expectation maximization (EM) algorithm to adapt more complex GMM than usually observed with a noninteractive approach. Interactively fitting a GMM to heat pain threshold data acquired from human volunteers revealed a distribution pattern with four Gaussian modes located at temperatures of 32.3, 37.2, 41.4, and 45.4 °C. Noninteractive fitting was unable to identify a meaningful data structure. Obtained results are compatible with known activity temperatures of different TRP ion channels suggesting the mechanistic contribution of different heat sensors to the perception of thermal pain. Thus, sophisticated analysis of the modal structure of biomedical data provides a basis for the mechanistic interpretation of the observations. As it may reflect the involvement of different TRP thermosensory ion channels, the analysis provides a starting point for hypothesis-driven laboratory experiments.  相似文献   

5.
TGF β-activated kinase 1 (TAK1) is an important participant in inflammatory pathogenesis for diseases such as rheumatoid arthritis (RA) and gouty arthritis. The central position it occupies between the mitogen activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathways makes it an attractive therapeutic target. As this field has developed in recent years, several novel inhibitors have been presented as having specific activity that reduces the TAK1 function either covalently as in the case of 5Z-7-oxozeanol (5Z7O) or reversibly (NG-25). However, the mechanism through which takinib elicits its anti-inflammatory activity remains elusive. While this inhibitor shows great promise, a thorough analysis of its inhibitor function and its potential off-target effects is necessary before addressing its clinical potential or its use in inflammatory conditions. An analysis through Western blot showed an unexpected increase in IL-1β-induced TAK1 phosphorylation—a prerequisite for and indicator of its functional potential—by takinib while simultaneously demonstrating the inhibition of the JAK/STAT pathway in human rheumatoid arthritis synovial fibroblasts (RASFs) in vitro. In THP-1 monocyte-derived macrophages, takinib again led to the lipopolysaccharide-induced phosphorylation of TAK1 without a marked inhibition of the TAK1 downstream effectors, namely, of c-Jun N-terminal kinase (JNK), phospho-c-Jun, NF-κB phospho-p65 or phospho-IκBα. Taken together, these findings indicate that takinib inhibits inflammation in these cells by targeting multiple signaling pathways, most notably the JAK/STAT pathway in human RASFs.  相似文献   

6.
Autophagy is an evolutionarily conserved process for the degradation of redundant or damaged cellular material by means of a lysosome-dependent mechanism, contributing to cell homeostasis and survival. Autophagy plays a multifaceted and context-dependent role in cancer initiation, maintenance, and progression; it has a tumor suppressive role in the absence of disease and is upregulated in cancer cells to meet their elevated metabolic demands. Autophagy represents a promising but challenging target in cancer treatment. Green tea is a widely used beverage with healthy effects on several diseases, including cancer. The bioactive compounds of green tea are mainly catechins, and epigallocatechin-gallate (EGCG) is the most abundant and biologically active among them. In this review, evidence of autophagy modulation and anti-cancer effects induced by EGCG treatment in experimental cancer models is presented. Reviewed articles reveal that EGCG promotes cytotoxic autophagy often through the inactivation of PI3K/Akt/mTOR pathway, resulting in apoptosis induction. EGCG pro-oxidant activity has been postulated to be responsible for its anti-cancer effects. In combination therapy with a chemotherapy drug, EGCG inhibits cell growth and the drug-induced pro-survival autophagy. The selected studies rightly claim EGCG as a valuable agent in cancer chemoprevention.  相似文献   

7.
8.
9.
Fluorescence in situ hybridization (FISH) is a well-established technique that is used for a variety of purposes, ranging from pathogen detection in clinical diagnostics to the determination of chromosomal stability in stem cell research. The key step of FISH involves the detection of a nucleic acid region and as such, DNA molecules have typically been used to probe for the sequences of interest. However, since the turn of the century, an increasing number of laboratories have started to move on to the more robust DNA mimics methods, most notably peptide and locked nucleic acids (PNA and LNA). In this review, we will cover the state-of-the-art of the different DNA mimics in regard to their application as efficient markers for the presence of individual microbial cells, and consider their potential advantages and pitfalls. Available PNA probes are then reassessed in terms of sensitivity and specificity using rRNA databases. In addition, we also attempt to predict the applicability of DNA mimics in well-known techniques attempting to detect in situ low number of copies of specific nucleic acid sequences such as catalyzed reporter deposition (CARD) and recognition of individual genes (RING) FISH.  相似文献   

10.
Schizophrenia is a major psychotic disorder affecting nearly 23.6 million people globally and greatly impacting the cognitive and social functioning of individuals. Multiple risk factors, including genetic, environmental, and epigenetic factors have been identified. However, the exact mechanism by which some factors aid in the development of schizophrenia is still uncertain. Acute and/or long-standing inflammation has been implicated as both a cause and effect of schizophrenia. Heightened immune responses have been documented in large cohorts of individuals with schizophrenia. While not completely known, multiple hypotheses, such as disruption of the blood–brain barrier, alterations in the kynurenine/tryptophan pathway, and increased microglial activation, have been presented to correlate inflammation with schizophrenic symptoms. Measurement of C-reactive protein (CRP) is a commonly performed and inexpensive test on patients’ serum to determine levels of systemic inflammation in the body. Multiple studies have reported an elevated CRP level in different stages of schizophrenia, indicating its potential to be used as a viable biomarker in the diagnosis and monitoring of schizophrenia along with assessing treatment response to conventional and non-conventional treatment regimens. This review aims to evaluate the role of inflammation, in general, and CRP, in particular, in the pathogenesis of schizophrenia and its potential significance in diagnostic, therapeutic, and preventative approaches towards schizophrenia and psychosis.  相似文献   

11.
In spite of increasing use in the food industry, high relative levels of palmitic acid (C16:0) in cottonseed oil imposes harmful effects on human health when overconsumed in the diet. The limited understanding of the mechanism in controlling fatty acid composition has become a significant obstacle for breeding novel cotton varieties with high-quality oil. Fatty acyl–acyl carrier protein (ACP) thioesterase B (FatBs) are a group of enzymes which prefer to hydrolyze the thioester bond from saturated acyl-ACPs, thus playing key roles in controlling the accumulation of saturated fatty acids. However, FatB members and their roles in cotton are largely unknown. In this study, a genome-wide characterization of FatB members was performed in allotetraploid upland cotton, aiming to explore the GhFatBs responsible for high accumulations of C16:0 in cotton seeds. A total of 14 GhFatB genes with uneven distribution on chromosomes were identified from an upland cotton genome and grouped into seven subfamilies through phylogenetic analysis. The six key amino acid residues (Ala, Trys, Ile, Met, Arg and Try) responsible for substrate preference were identified in the N-terminal acyl binding pocket of GhFatBs. RNA-seq and qRT-PCR analysis revealed that the expression profiles of GhFatB genes varied in multiple cotton tissues, with eight GhFatBs (GhA/D-FatB3, GhA/D-FatB4, GhA/D-FatB5, and GhA/D-FatB7) having high expression levels in developing seeds. In particular, expression patterns of GhA-FatB3 and GhD-FatB4 were positively correlated with the dynamic accumulation of C16:0 during cotton seed development. Furthermore, heterologous overexpression assay of either GhA-FatB3 or GhD-FatB4 demonstrated that these two GhFatBs had a high substrate preference to 16:0-ACP, thus contributing greatly to the enrichment of palmitic acid in the tested tissues. Taken together, these findings increase our understanding on fatty acid accumulation and regulation mechanisms in plant seeds. GhFatBs, especially GhA-FatB3 and GhD-FatB4, could be molecular targets for genetic modification to reduce palmitic acid content or to optimize fatty acid profiles in cotton and other oil crops required for the sustainable production of healthy edible oil.  相似文献   

12.
13.
Neoadjuvant chemoradiation (nCRT) is an established procedure in stage union internationale contre le cancer (UICC) II/III rectal carcinomas. Around 53% of the tumours present with good tumor regression after nCRT, and 8%–15% are complete responders. Reliable selection markers would allow the identification of poor or non-responders prior to therapy. Tumor biopsies were harvested from 20 patients with rectal carcinomas, and stored in liquid nitrogen prior to therapy after obtaining patients’ informed consent (Erlangen-No.3784). Patients received standardized nCRT with 5-Fluoruracil (nCRT I) or 5-Fluoruracil ± Oxaliplatin (nCRT II) according to the CAO/ARO/AIO-04 protocol. After surgery, regression grading (Dworak) of the tumors was performed during histopathological examination of the specimens. Tumors were classified as poor (Dworak 1 + 2) or good (Dworak 3 + 4) responders. Laser capture microdissection (LCM) for tumor enrichment was performed on preoperative biopsies. Differences in expressed proteins between poor and good responders to nCRT I and II were identified by proteomic analysis (Isotope Coded Protein Label, ICPL™) and selected markers were validated by immunohistochemistry. Tumors of 10 patients were classified as histopathologically poor (Dworak 1 or 2) and the other 10 tumor samples as histopathologically good (Dworak 3 or 4) responders to nCRT after surgery. Sufficient material in good quality was harvested for ICPL analysis by LCM from all biopsies. We identified 140 differentially regulated proteins regarding the selection criteria and the response to nCRT. Fourteen of these proteins were synchronously up-regulated at least 1.5-fold after nCRT I or nCRT II (e.g., FLNB, TKT, PKM2, SERINB1, IGHG2). Thirty-five proteins showed a complete reciprocal regulation (up or down) after nCRT I or nCRT II and the rest was regulated either according to nCRT I or II. The protein expression of regulated proteins such as PLEC1, TKT, HADHA and TAGLN was validated successfully by immunohistochemistry. ICPL is a valid method to identify differentially expressed proteins in rectal carcinoma tissue between poor vs. good responders to nCRT. The identified protein markers may act as selection criteria for nCRT in the future, but our preliminary findings must be reproduced and validated in a prospective cohort.  相似文献   

14.
Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp–17–2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp–05–1 and qrxp–17–1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp–17–2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars.  相似文献   

15.
20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4.  相似文献   

16.
Nitrogen (N) is a major limiting factor for plant growth and crop production. The use of N fertilizer in forestry production is increasing each year, but the loss is substantial. Mastering the regulatory mechanisms of N uptake and transport is a key way to improve plant nitrogen use efficiency (NUE). However, this has rarely been studied in pecans. In this study, 10 AMT and 69 NRT gene family members were identified and systematically analyzed from the whole pecan genome using a bioinformatics approach, and the expression patterns of AMT and NRT genes and the uptake characteristics of NH4+ and NO3 in pecan were analyzed by aeroponic cultivation at varying NH4+/NO3 ratios (0/0, 0/100,25/75, 50/50, 75/25,100/0 as CK, T1, T2, T3, T4, and T5). The results showed that gene duplication was the main reason for the amplification of the AMT and NRT gene families in pecan, both of which experienced purifying selection. Based on qRT-PCR results, CiAMTs were primarily expressed in roots, and CiNRTs were majorly expressed in leaves, which were consistent with the distribution of pecan NH4+ and NO3 concentrations in the organs. The expression levels of CiAMTs and CiNRTs were mainly significantly upregulated under N deficiency and T4 treatment. Meanwhile, T4 treatment significantly increased the NH4+, NO3, and NO2 concentrations as well as the Vmax and Km values of NH4+ and NO3 in pecans, and Vmax/Km indicated that pecan seedlings preferred to absorb NH4+. In summary, considering the single N source of T5, we suggested that the NH4+/NO3 ratio of 75:25 was more beneficial to improve the NUE of pecan, thus increasing pecan yield, which provides a theoretical basis for promoting the scale development of pecan and provides a basis for further identification of the functions of AMT and NRT genes in the N uptake and transport process of pecan.  相似文献   

17.
The TALE gene family is a subfamily of the homeobox gene family and has been implicated in regulating plant secondary growth. However, reports about the evolutionary history and function of the TALE gene family in bamboo are limited. Here, the homeobox gene families of moso bamboo Olyra latifolia and Bonia amplexicaulis were identified and compared. Many duplication events and obvious expansions were found in the TALE family of woody bamboo. PhTALEs were found to have high syntenies with TALE genes in rice. Through gene co-expression analysis and quantitative real-time PCR analysis, the candidate PhTALEs were thought to be involved in regulating secondary cell wall development of moso bamboo during the fast-growing stage. Among these candidate PhTALEs, orthologs of OsKNAT7, OSH15, and SH5 in moso bamboo may regulate xylan synthesis by regulating the expression of IRX-like genes. These results suggested that PhTALEs may participate in the secondary cell wall deposition in internodes during the fast-growing stage of moso bamboo. The expansion of the TALE gene family may be implicated in the increased lignification of woody bamboo when divergent from herbaceous bamboos.  相似文献   

18.
19.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   

20.
Bladder cancer has a high recurrence rate; therefore, frequent and effective monitoring is essential for disease management. Cystoscopy is considered the gold standard for the diagnosis and continuous monitoring of bladder cancer. However, cystoscopy is invasive and relatively expensive. Thus, there is a need for non-invasive, relatively inexpensive urinary biomarker-based diagnoses of bladder cancer. This study aimed to investigate the presence of activated protein kinase Cα (PKCα) in urine samples and the possibility of PKCα as a urinary biomarker for bladder cancer diagnosis. Activated PKCα was found to be present at higher levels in bladder cancer tissues than in normal bladder tissues. Furthermore, high levels of activated PKCα were observed in urine samples collected from orthotopic xenograft mice carrying human bladder cancer cells compared to urine samples from normal mice. These results suggest that activated PKCα can be used as a urinary biomarker to diagnose bladder cancer. To the best of our knowledge, this is the first report describing the presence of activated PKCα in the urine of orthotopic xenograft mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号