首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
储能系统既能作为电源,又可以作为负荷,在微网中起着双向调节的重要作用。随着微网中储能技术的应用,级联多电平变换器作为一种新颖的储能功率调节系统(PCS)开始被广泛研究。级联储能变换器的H桥直流链电流包括直流分量与纹波电流分量,纹波电流分量会对电池储能系统性能产生不利影响。论文首先研究了H桥直流链电流中纹波电流形成的机理,建立了H桥纹波电流电路模型,研究了直流链纹波电流的传输特性与影响因素;在此基础上提出了基于直流有源滤波器(DC-APF)的级联储能变换器电路拓扑,研究了利用直流有源滤波器抑制H桥直流链纹波电流的控制策略,最后通过仿真显示了该方法的有效性。  相似文献   

2.
主要针对H桥级联型大容量电池储能功率转换系统(PCS)调制策略进行了理论分析和研究。首先针对载波移相PWM调制,载波层叠PWM调制以及阶梯波调制分别分析了其电压频谱特性,并设计出一种简单的阶梯波调制方法。其次基于容量等级和额定电压为2 MW/10 kV的储能功率转换系统,构建了Matlab仿真模型,仿真验证了这种阶梯波调制的有效性并比对不同调制方法的差别。  相似文献   

3.
储能具有调峰幅度大、响应速度快等优点,可为电网运行提供调峰、调频、备用、黑启动、需求响应等多种服务,是提高电网运行灵活性和安全性的重要技术手段。近年来,在国家及各地方利好政策的刺激下,储能技术迅猛发展,逐渐由小容量、小规模的分布式储能向大容量、规模化的集中式储能发展。由于电化学储能具有响应速度快、能量密度高和循环效率高等技术优势,成为各国储能产业研发创新的重点领域和主要增长点。目前对储能的研究多集中于小容量的电化学储能本体及对小规模配网/微网的影响,本文提出了运用戴维南定理和模拟受控电流源这两种方法对大容量储能电站进行等值仿真建模,通过与完整仿真模型的对比,验证了等值仿真模型的正确性。通过在实际系统中对储能电站接入后的并网运行特性进行研究,发现储能电站在三相、单相短路故障表现出的暂态特性与传统交流系统均有所区别,因此在储能电站接入系统时需对其暂态特性进行专题研究。  相似文献   

4.
高压大容量储能功率转换系统的主电路是储能电池进行充放电控制的基础,选择合理的功率转换系统主电路拓扑结构直接关系到高压大容量储能系统实际应用的可行性。分析变压器升压型变流器并联结构、H桥链式多电平变流器、全(半)桥模块化多电平变流器的单级式与双级式主电路拓扑结构,对比上述拓扑结构的材料成本、工作可靠性、材料功率损耗和输出电能质量。基于数学模型与仿真分析综合比较单位容量投资成本、工作可靠性、系统损耗和输出电能质量,结果显示H桥链式多电平变流器和半桥模块化多电平变流器更适合构建10 kV兆瓦级高压大容量储能功率转换系统。  相似文献   

5.
为了全面测试南方电网公司自主研发即将在深圳投运的大容量电池储能系统,在深入了解大容量电池储能系统控制策略、保护功能及高级应用功能的基础上,对大容量电池储能系统实时数字仿真(RTDS)测试关键技术进行了研究。结果显示:大容量电池储能系统的RTDS测试的技术难点主要在于测试方案研究、建模规模评估及具体的系统建模等;蓄电池组及PCS部分建模是大容量电池储能系统的RTDS测试平台构建的关键环节;所建议的模型能反映大容量电池储能系统的RTDS控制特性,可对其功能及动态特性进行试验研究及验证。  相似文献   

6.
电池储能具有响应速度快、功率密度高、安装地点无要求等特点,是目前十分有前景的储能技术之一。级联变流器用作大容量电池储能变流器时,能够省去工频变压器直接接入中高压电网,即高压直挂式电池储能系统,具备模块化、高电压直挂、单机大容量、多电平输出等优点。然而,目前国内外还缺乏计及电池外特性的高压直挂储能系统的实时仿真模型的研制以及基于实时仿真模型的控保策略研究。首先开发了国内外首个基于CPU和FPGA联合仿真的高压直挂大容量电池储能系统的实时仿真模型。其次以典型的35 kV高压直挂大容量电池储能系统为例,基于OPAL-RT的RT-LAB实时仿真平台,搭建了相应的实时仿真系统,能够支持控制保护系统的闭环接入。最后,多种工况下的测试结果能够验证实时仿真模型和控制保护策略的有效性,为高压直挂大容量电池储能系统的设计和控制优化提供技术支撑。  相似文献   

7.
罗军  田刚领  赵佩宏  陈晨 《电源技术》2022,(10):1195-1198
开展了500 kWh集装箱式锂电池储能系统集成设计及研制。研究了储能系统静态下电池单体、电池模块、电池簇的电压和内阻一致性,以及储能系统额定功率充放电过程中电压、电流和温度特性。静态下储能系统单体电压极差8 mV,电池模块电压极差93 mV,内阻极差0.41 mΩ,电池簇电压极差150 mV,内阻极差17.63 mΩ;充放电过程中储能系统簇间电流极差6.8 A,电压极差3.0 V,电池最大温升15.0℃,最大温差5.0℃。研究结果可以为大容量集装箱式锂电池储能系统电池组性能评价提供参考。  相似文献   

8.
近年来山东电网新能源发电容量不断增长,系统调峰能力不足的问题逐渐凸显,特高压直流投产进一步挤占了系统的调峰容量,新能源发电的消纳压力逐步增大。在详细分析山东电网现有运行问题的基础上,从系统调峰、新能源消纳、电网安全、局部电网潮流改善、系统调频、电网黑启动、短路电流特性共7个方面,阐述大容量电池储能电站对解决现有山东电网运行问题的可行性,并分析了大容量电池储能电站的运行经济性。  相似文献   

9.
基于等效电路法的大容量蓄电池系统建模与仿真   总被引:2,自引:0,他引:2  
储能系统为可再生能源(如风电、光伏等)大规模接入电网提供了一种有效的方法。通过电池单体的串/并联可实现电池系统容量的扩大。该文针对由电池单体串并联组成的大容量蓄电池系统(large capacity battery system,LCBS),考虑到电池单体的参数非线性及容量不一致性等特点,结合串/并联电路工作特性,提出一种适宜于电气设计与仿真的LCBS等效电路建模方法,并在Matlab/Simulink中对串联、并联及串/并联型的锂离子LCBS进行了建模与仿真。通过仿真结果与实验数据的对比表明,在不同带载情况下,所提出LCBS模型能准确预测其放电工作特性,进而验证了所提出模型的准确性。  相似文献   

10.
电池储能系统为风电和光伏发电等分布式电源大规模接入电网提供了一种有效的方式。介绍了大容量电池储能系统结构及其工作原理,分析了电池系统充放电工作特性及其性能参数与电池荷电状态的关系,从系统应用的角度提出基于电池荷电状态的大容量电池储能系统数学模型,讨论了电池荷电状态对大容量电池储能系统控制特性的影响。在PSCAD/EMTDC环境下搭建了大容量电池储能系统的仿真平台,进行了系统充放电工作特性的仿真。仿真结果和试验数据对比分析表明,所建立的电池储能系统数学模型能有效地模拟大容量电池储能系统的充放电工作特性,为大容量电池储能系统的控制与应用提供了理论基础。  相似文献   

11.
大容量电池储能技术的快速发展及应用为大规模风电的接入与消纳提供了新的解决思路与方法,但电池储能在电力系统应用中的建模问题一直没能得到较好的解决。建立基于戴维南等效电路的电池储能系统仿真模型,并在模型中计及电池荷电状态和充放电电流对模型参数的影响,同时提出基于实验数据拟合模型参数的方法。在此基础上,分析讨论该模型在电力系统不同应用场景中的主导因素,建立适用于多时间尺度的电池储能仿真模型,并通过实测电压电流曲线验证了模型的有效性。最后以平抑风电中长期波动性为例,通过计算机仿真采用戴维南等效电路简化模型的电池储能平抑风电输出波动的效果,并比较与采用常规恒功率模型时的优点及对储能容量规划的影响。  相似文献   

12.
储能技术是构建以新能源为主体的新型电力系统的关键技术。基于级联多电平换流器的链式储能系统采用与交流电网直连的方式,若干功率模块级联实现交流输出电压的提升。该方案延续了储能设备响应速度快、效率高的特点,同时相较于传统的升压式储能损耗更小、谐波含量更低,尤其适用于大容量储能电站的应用。然而,链式储能系统的拓扑结构决定了其功率模块直流侧有较大的电流二次谐波,该谐波直接注入电池系统将导致电池系统高频率充放电,严重影响电池的使用寿命,降低储能系统的可靠性;国内外现有研究中,功率模块可以通过无源滤波设备与电池系统进行连接,一定程度上降低了电池侧的电流脉动。研究了基于级联多电平换流器的链式储能系统的控制策略,针对其功率模块直流电流二次谐波含量高的问题,提出了一种利用DC/DC变换器抑制电流谐波的策略,该策略可大幅降低功率模块直流电流二次谐波含量,适用于中压大容量级联多电平链式储能系统。最终,通过仿真和实验验证了所提控制策略的可行性和有效性。  相似文献   

13.
在高压大功率储能应用场景中采用中压储能系统相对低压储能系统具有更高的效率。目前基于级联H桥的中压储能系统研究较多,但已有研究多集中于并网运行,离网控制研究较少。该文对基于级联H桥的模块化多电平中压储能系统的离网运行控制进行了阐述。建立了级联H桥中压储能系统的离网模型,提出了包含交流电压外环和电流内环的中压储能系统离网电压控制策略,并针对离网运行时单相负载较多,三相电压容易不平衡的问题,提出了三相电压不平衡补偿控制方法。搭建了MATLAB/RT_LAB实时仿真系统,对上述控制进行了仿真验证。结果表明,三相负载平衡时,负载端电压保持恒定,电流内环跟踪精确;三相负载不平衡时,经电压不平衡补偿后,负载端的三相电压仍然能保持平衡,负载三相电流则随三相负载的大小而不同,仿真证明了该文提出的级联H桥中压储能系统离网控制策略的有效性。  相似文献   

14.
锂离子电池因其性能优异在高电压大容量的储能系统得到了广泛的应用,但锂离子电池单体容量过大,充放电过程中易产生高温,诱发不安全因素,必须采用锂离子电池管理系统来维护电池安全运行,并延长电池循环寿命。根据锂离子电池在储能系统中的特性,提出了一种新型的分层管理的储能用锂离子电池管理系统,详细论述了每层的结构和功能,并着重介绍了整个锂离子电池管理系统的主要功能,特别是单体电池数据采集功能、电池状态估计功能和均衡管理功能,并对各自的实验策略进行了实验验证。实验结果验证了该种管理系统能满足现实储能系统的需要,实现了锂离子电池的高精度状态估计和高效均衡功能。  相似文献   

15.
为更好地应对可再生能源装机容量不断提升而传统分布式储能系统容量小、电压等级低的问题,提出采用级联H桥拓扑实现单机电池储能系统(BESS)的高压、大容量化。为增强储能系统入电网友好性,对虚拟同步发电机(VSG)控制技术进行了研究,结合同步发电机的一次调频特性及调压特性,详细分析了同步发电机的二阶等效模型和VSG控制策略,建立VSG控制的宽频带小信号动态模型,定量分析VSG控制的固有功率耦合特性及交流侧阻抗对VSG控制的影响,提高了VSG模型准确度。通过频域模型分析虚拟惯性和阻尼以及无功控制参数与BESS性能的关系,为VSG稳定性分析及关键参数的设计与优化提供了依据。针对VSG控制下BESS模块电池荷电状态均衡的问题,提出一种改进型最近电平调制方法并给出了调制原理,实现了相内模块间荷电状态的自均衡。最后,利用搭建的仿真模型,验证了VSG在级联型BESS应用中的可行性、参数分析以及调制方法的有效性。  相似文献   

16.
针对退运电池梯次利用,建立了基于半桥级联型拓扑的电池柔性成组储能系统架构,并提出了与之相适应的控制策略。储能拓扑采用半桥级联的方式实现高压输出,模块间采用无主从独立控制,具有模块化设计、结构简单、等效开关频率高、控制简单等优点。根据储能系统需求,模块采用基于下垂控制的电流控制策略,由上位机统一指令,各模块独立执行,解决了传统直接电流控制由于采样误差造成的系统难以正常工作的问题。该文进行了理论分析和仿真验证,并搭建了三模块级联实验平台,验证了基于下垂控制的电流控制策略的可行性,实现了功率控制及模块间均衡控制,所建储能系统适用于梯次电池利用。  相似文献   

17.
合理配置储能容量,是保证以可再生能源为主体电源的独立微网经济可靠运行的关键。基于微网地下水开采负荷的可控性,提出可再生能源/储能/负荷协调的微网系统功率分配策略。在此基础上,考虑蓄电池储能的运行特性对其寿命影响,提出微网电池储能的容量优化模型。以中国西北地区风光互补独立微网为例,对电池储能容量优化进行研究,仿真结果验证了所建模型的合理性。  相似文献   

18.
考虑电池储能系统自身容量限制下提升一次频率响应的自适应性,提出一种计及荷电状态(SOC)的电池储能系统一次调频综合控制策略.建立电池储能系统一次调频动态模型,对比分析了虚拟惯性与虚拟下垂控制对电网频率偏差的调节特性.设计考虑SOC的电池储能系统一次调频自适应综合控制策略,并引入一种由综合考虑频率偏差及其变化率的输入系数与计及电池储能系统SOC的反馈系数相结合的自适应因子,输入系数由模糊逻辑控制器自适应调节,反馈系数通过回归函数自适应调节.最后搭建仿真模型进行阶跃和连续负荷扰动工况下不同控制策略对比分析,仿真结果验证了所提控制策略能自适应控制电池储能系统出力,有效提升一次调频效果.  相似文献   

19.
电池储能系统是平抑风电功率预测误差的理想选择,在现有储能电池价格水平前提下,电池储能系统的功率与容量优化配置尤为重要。基于风电场功率预测误差分布特性,依据风电功率预测预报标准中的约束条件和考核指标,分析了电池储能系统功率与风电功率预测误差、风电功率预测误差缩减率、全天预测结果的均方根误差、准确率及合格率的特性关系,储能系统容量与容量需求满足率及容量需求满足增长率的特性关系。为较好平抑风电功率预测误差且使投入成本较低,基于截止正态分布法,提出了一种储能系统功率与容量配置优化方法。该方法可计算用于跟踪风电场计划出力所需的较优储能系统功率与容量。通过实例计算分析,验证了该方法的有效性和可行性。  相似文献   

20.
基于Z源变换器的电动汽车超级电容-电池混合储能系统   总被引:1,自引:0,他引:1  
Z源变换器具有单级升压、降压、无死区、电压畸变小、可靠性高等优点,在电动汽车领域具有广阔的前景。提出一种基于Z源变换器的电动汽车超级电容-电池混合储能系统。该结构将储能与驱动系统相融合,减少了电池功率变换器,降低了损耗与成本。详细分析通过Z源变换器实现混合储能系统不同模式下功率分配的运行机理。此基础上提出功率分频协调控制策略以提高混合储能系统的响应速度并实现各模式的无缝切换。最后,为了避免短时尺度冲击电流对电池的影响,设计电池瞬态峰值电流估计方法。仿真与实验结果验证了所提出的混合储能系统及控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号