首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对风电机组变工况滚动轴承故障诊断问题,将变分模态分解(variational mode decomposition,VMD)与计算阶比跟踪(computed order tracking,COT)、逆包络阶次谱(reversed sequence squared envelope spectrum,RE-SES)2种方法结合进行包络阶次分析;将非平稳的时间域信号转换成平稳的角度域信号,再经包络法找出滚动轴承故障特征信息。仿真与实验结果表明,VMD结合RE-SES包络阶次法可以更加有效地提取出调幅信号中的调制阶次,并且VMD滤波可以使得故障特征阶次更加凸显,易于故障识别,为风电机组变速工况下的滚动轴承故障诊断提供参考。  相似文献   

2.
针对强背景噪声干扰下的滚动轴承复合故障特征难以提取且变分模态分解(variational modal decomposition,VMD)中参数需要提前确定的问题,提出一种基于蝙蝠算法优化VMD参数的滚动轴承复合故障分离方法。首先,提出一种新的复合影响指数,将其与现有指标进行比较,结果表明,所提指标对故障信号的敏感性提高了29.6%。然后,将最小平均复合影响指数作为目标函数,利用蝙蝠算法自适应搜索VMD的最优参数进行变分模态分解。最后,对分解后的模态分量进行包络解调分析,通过包络谱判断轴承的故障类型。仿真及试验结果表明,该方法能够从噪声干扰下的复合故障信号中有效分离出单一故障信息,实现轴承故障类型的确定,从而验证了该方法的有效性。  相似文献   

3.
何勇  王红  谷穗 《振动与冲击》2021,(6):184-189
为准确提取轴承故障特征信息,提出以峭度指标和包络熵为综合目标函数的变分模态分解(variational mode decomposition,VMD)参数优化方法,并改进了诊断流程实现了无需指定参数优化范围的自适应参数优化算法.通过遗传算法对综合目标函数最小值进行搜索,以确定模态分量个数及惩罚参数的最佳组合.原始故障信...  相似文献   

4.
针对滚动轴承早期故障比较微弱,特征信息难以提取且变分模态分解(VMD)中分解层数k的大小需要使用者反复尝试而不能有效确定的问题,提出了改进的VMD方法,以能量差作为评价参数自适应地确定分解层数k。在此基础上,将改进的VMD与包络导数能量算子结合,提出了VMD与包络导数能量算子的轴承早期故障诊断方法。采用VMD对轴承故障振动信号进行分解,根据能量差曲线确定最佳的分解层数k;依据峭度准则,从分解得到的k个本征模态分量中选取敏感分量进行重构;并用包络导数能量算子对重构信号进行解调分析,从其能量谱中便可准确地提取轴承的故障特征信息。通过仿真信号和实验数据的分析,验证了该方法的有效性与可行性。  相似文献   

5.
针对滚动轴承振动信号非平稳、非线性且易受噪声干扰的特点,以及单一振动信号对某些轴承故障识别率偏低的问题,提出一种基于变分模态分解(variational mode decomposition, VMD)灰度图像编码和卷积神经网络(convolutional neural networks, CNN)的多传感融合轴承故障诊断方法。首先,采用VMD对驱动端和风扇端振动信号分解,提取各阶本征模态分量与原始信号相关系数最大的分量;其次,将筛选出的本征模态函数(intrinsic mode function, IMF)分量依次排列并转换成灰度图像;最后,设计CNN结构,将训练集输入网络进行训练,测试集验证网络的有效性,实现滚动轴承故障识别。CWRU数据集和西安交通大学XJTU-SY数据集测试准确率分别达到99.90%和100%,结果表明:该方法能够准确识别变工况下轴承故障类别及损伤程度;对原始信号加入高斯噪声后的测试准确率分别达到99.75%和99.90%,证明该方法具有良好的泛化能力和抗噪性能。  相似文献   

6.
变分模态分解(Variational Mode Decomposition,VMD)是一种不同于递归式模态分解新方法,具有优良的频率剖分特性,但其在处理信号时受分量个数影响严重,通过主观经验难以合理设置该参数。针对该问题,利用奇异值分解清晰的信噪分辨能力,根据奇异值最佳有效秩阶次自动搜寻VMD的分量个数,提出了一种改进变分模态分解的风电齿轮箱不平衡故障特征提取方法。通过仿真信号及轴不平衡实验信号对该方法进行了验证,并将其应用于风电齿轮箱稳定工况下的现场故障诊断中,均成功提取出微弱特征频率信息,实现对齿轮箱不平衡故障的有效判别,具有一定可靠性。  相似文献   

7.
针对海上低信噪比舰船目标的识别问题,对传统卷积神经网络进行改进并与变分模态分解相结合,提出了基于VMD和改进CNN的舰船辐射噪声识别方法。应用所提方法对东海试验中12艘辐射噪声信噪比低于5 dB的舰船目标进行了识别,平均正确率为98.6%;相比于其他7种识别方法,分别提升了24.8%、17.0%、15.1%、8.0%、13.1%、16.8%、5.2%;改进卷积网络较传统卷积网络在运算量和识别速率方面有明显优势。  相似文献   

8.
为识别结构损伤位置及对损伤程度进行量化,提出了一种基于变分模态分解(variational mode decomposition,VMD)和Chirplet变换的结构损伤识别方法。采用VMD对结构振动响应信号进行分解得到模态分量,并利用Chirplet变换对模态分量进行时频分析,构建模态分量Chirplet变换能量指标识别损伤位置,利用Chirplet时频熵量化结构损伤程度。采用一个刚度变化的简支梁数值算例对所提方法进行验证,结果表明,无论单点损伤或多点损伤,所提方法均能准确识别结构的损伤位置并量化损伤程度。  相似文献   

9.
风电机组齿轮箱结构复杂,当齿轮、轴承存在多故障时,由于各故障强弱不同、故障间相互耦合及噪声干扰,造成故障诊断准确率低及漏诊问题.提出了一种基于多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)和增强倒频谱的风电机组齿轮...  相似文献   

10.
针对高速列车轮对轴承工作环境复杂,振动信号中时常伴有冲击性噪声和循环平稳性噪声,使得传统的参数自适应变分模态分解(variational modal decomposition,VMD)方法对轮对轴承的故障特征信息提取不准确的问题,提出了一种基于集成经验模态分解(ensemble empirical mode deco...  相似文献   

11.
陈鹏  赵小强 《振动与冲击》2021,(13):146-153
针对复杂工况和强背景噪声干扰下,滚动轴承早期故障信号微弱导致故障特征难以提取的问题.提出了优化变分模态分解(VMD)与改进阈值降噪的滚动轴承故障特征提取方法.首先,通过鲸鱼优化算法(WOA)优化VMD实现振动信号的自适应分解,建立了L-峭度和相关系数的最优模态分量选取准则;然后对选取的最佳分量进行改进阈值降噪;最后,对...  相似文献   

12.
针对变分模态分解(variational mode decomposition,VMD)中模态数K和惩罚因子α无法自适应确定的问题,提出了基于快速变分模态分解(fast VMD,FVMD)的滚动轴承故障特征提取方法。首先,利用频谱趋势分割方法对滚动轴承振动信号进行分析,确定频谱趋势分割边界,进而自适应确定VMD的分解模态数K和惩罚因子α、模态初始中心频率ω;其次,根据参数K、α、ω,完成原始振动信号的自适应分解,并基于有效权重峭度准则提取有效本征模态函数(intrinsic mode function,IMF)分量;最后,利用希尔伯特包络解调计算有效IMF分量重构信号的包络频谱图,完成滚动轴承故障特征的提取。使用仿真信号、美国凯斯西储大学(Case Western Reserve University,CWRU)和美国航空航天局(National Aeronautics and Space Administration,NASA)的滚动轴承数据完成所提方法与传统VMD方法的对比试验。结果表明,所提方法能够自适应确定VMD的分解模态数K和惩罚因子α,提高VMD的计算效率,同时有效提取到滚动轴承的故障特征频率,证明了所提方法的有效性和可行性。  相似文献   

13.
尚秋峰  黄达  巩彪 《振动与冲击》2023,(19):231-239
海底光缆的在线监测和振动信号识别是保证其正常运行的关键技术。搭建了基于布里渊光时域分析系统,模拟不同工况下的海缆振动信号。针对海缆振动信号信息丰富、信噪比低,使用单一随机配置网络(stochastic configuration network,SCN)模型对信号识别准确率不高的问题,提出了自适应增强(adaptive boosting,AdaBoost)算法优化的随机配置网络(AdaBoost-SCN)识别方法。首先用变分模态分解(variational mode decomposition,VMD)算法分解海缆振动信号,构建特征向量;然后采用AdaBoost-SCN算法对振动信号分类。结果表明,所提方法有着很高的精度,并且具有很强的鲁棒性与泛化能力,提高了布里渊光时域分析系统振动信号识别的有效性。  相似文献   

14.
受运行环境及传递路径影响,滚动轴承声音信号中包含有强背景噪声和较大的非周期性瞬态冲击成分,导致轴承故障特征提取困难.文中提出一种基于自适应变分模态分解(AVMD)的滚动轴承噪声信号故障诊断方法.该方法首先根据不同的信号自适应地确定模式数和惩罚因子,利用优化参数的VMD对原始信号进行分解,得到多个本征模式分量;然后计算各...  相似文献   

15.
针对复合信号源信号数目未知,无法正确预设分解模态数K值而不能对信号进行有效变分模态(variational mode decomposition,VMD)的问题,提出了一种基于稀疏指标的优化VMD法。该方法基于VMD所构建变分模型中各个分量的稀疏先验知识,实现了VMD自适应寻优K值,其将最佳K值确定为稀疏指标由上升至下降的转折点;在计算VMD各个分量的稀疏度时,考虑到不同分量间的能量差异加入了能量权值因子,最后将稀疏指标确定为分解后各分量边际谱稀疏度的平均值。仿真信号与实际信号分解试验验证表明:相较于其他两种VMD的K值确定方法,该方法确定的K值结果更为准确,实现的优化VMD自适应性更强,较其他信号分解法如经验模态分解(empirical mode decomposition,EMD)有更好的分解效果,为源信号数目未知的复合信号VMD提供了新思路;此外,噪声的鲁棒性试验证明所提基于稀疏指标的优化VMD法还具有一定的抗噪能力,较稳健,可开发应用于实际工程。  相似文献   

16.
为解决现有的非线性结构模型参数识别方法面临优化过程复杂的问题,提出一种基于变分模态分解(variational mode decomposition, VMD)和深度置信网络(deep belief network, DBN)的非线性结构模型参数识别方法。首先,利用VMD和希尔伯特变换(Hilbert transform, HT)识别振动响应的瞬时参数;将瞬时参数进行主成分分析后作为输入,非线性模型参数作为输出;然后,利用DBN拟合两者之间的非线性映射关系;最后,将实测振动响应的瞬时参数进行主成分分析,输入训练好的DBN可直接识别修正后的非线性模型参数。通过对两个不同非线性类型的双自由度模型和一个复杂框架模型在地震作用下的数值模拟,与高压输电结构的振动台试验,验证了该方法的有效性。数值与试验结果表明,所提方法具有较高的计算效率和良好的抗噪性。  相似文献   

17.
为了有效提取滚动轴承的故障信号,选择合适的智能分类器识别故障状态,提出基于变分模态分解及多重马氏距离法的多分类马田系统的故障智能诊断系统。通过变分模态分解将振动信号分解为多个本征模函数并提取相关特征;并采用了多重马氏距离法的马田系统,以特征子集代替特征参与分类器的构建,以解决特征参数众多的问题;通过正交表和信噪比,筛选出各状态的敏感模态分量,并提出多分类马田系统,用于多类故障智能识别;将其应用于滚动轴承故障数据中,验证算法的有效性,并与其他算法对比分析。结果表明,基于变分模态分解及改进的多分类马田系统算法能简化诊断系统、训练耗时少,识别准确率高,是一种更为有效的故障智能诊断方法。  相似文献   

18.
针对滚动轴承振动信号非平稳、非线性特点以及特征提取困难问题,提出一种基于变分模态分解(VMD)与深度卷积神经网络相结合的特征提取方法并应用于滚动轴承故障诊断.利用VMD将原始振动信号分解得到若干不同频率的限带本征模态分量,通过卷积网络中的多组卷积核自动学习各模态数据的不同特征,保证了特征提取的自适应性、全面性和多样性....  相似文献   

19.
针对变分模态分解(VMD)中难以确定分解分量个数k和惩罚参数α的问题。提出一种改进的变分模态分解方法—基于萤火虫算法及主模态分析法的变分模态分解(FA-PMA-VMD)方法。该方法用主模态分析(PMA)对VMD分解的带限内禀模态函数(BIMF)分量进行排序;用萤火虫算法对变分模态分解的最佳影响参数[k,α]组合进行搜索,以新提出的正交低峰值作为萤火虫算法的优化目标,得到的最佳的惩罚参数α和分量个数k组合;根据预先设定的故障特征参数自适应地将信号分解为k个BIMF分量。通过对仿真信号和齿轮齿根裂纹实际故障信号进行分析,分析结果表明FA-PMA-VMD具有良好的分解效果。  相似文献   

20.
针对变分模态分解(VMD)中难以确定分解分量个数k和惩罚参数α的问题。提出一种改进的变分模态分解方法—基于萤火虫算法及主模态分析法的变分模态分解(FA-PMA-VMD)方法。该方法用主模态分析(PMA)对VMD分解的带限内禀模态函数(BIMF)分量进行排序;用萤火虫算法对变分模态分解的最佳影响参数[k,α]组合进行搜索,以新提出的正交低峰值作为萤火虫算法的优化目标,得到的最佳的惩罚参数α和分量个数k组合;根据预先设定的故障特征参数自适应地将信号分解为k个BIMF分量。通过对仿真信号和齿轮齿根裂纹实际故障信号进行分析,分析结果表明FA-PMA-VMD具有良好的分解效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号