首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
With the increasing age of the population, the incidence of Parkinson’s disease (PD) has increased exponentially. The development of novel therapeutic interventions requires an understanding of the involvement of senescent brain cells in the pathogenesis of PD. In this review, we highlight the roles played by microglia in the basal ganglia in the pathophysiological processes of PD. In PD, dopaminergic (DAergic) neuronal degeneration in the substantia nigra pars compacta (SNc) activates the microglia, which then promote DAergic neuronal degeneration by releasing potentially neurotoxic factors, including nitric oxide, cytokines, and reactive oxygen species. On the other hand, microglia are also activated in the basal ganglia outputs (the substantia nigra pars reticulata and the globus pallidus) in response to excess glutamate released from hyperactive subthalamic nuclei-derived synapses. The activated microglia then eliminate the hyperactive glutamatergic synapses. Synapse elimination may be the mechanism underlying the compensation that masks the appearance of PD symptoms despite substantial DAergic neuronal loss. Microglial senescence may correlate with their enhanced neurotoxicity in the SNc and the reduced compensatory actions in the basal ganglia outputs. The dual roles of microglia in different basal ganglia regions make it difficult to develop interventions targeting microglia for PD treatment.  相似文献   

2.
    
Recently, oxytocin (OXT) has been investigated for its potential therapeutic role in addiction. OXT has been found to diminish various drug-seeking and drug-induced behaviors. Although its behavioral effects are well-established, there is not much consensus on how this neuropeptide exerts its effects. Previous research has given thought to how dopamine (DA) may be involved in oxytocinergic mechanisms, but there has not been as strong of a focus on the role that glutamate (Glu) has. The glutamatergic system is critical for the processing of rewards and the disruption of glutamatergic projections produces the behaviors seen in drug addicts. We introduce the idea that OXT has direct effects on Glu transmission within the reward processing pathway. Thus, OXT may reduce addictive behaviors by restoring abnormal drug-induced changes in the glutamatergic system and in its interactions with other neurotransmitters. This review offers insight into the mechanisms through which a potentially viable therapeutic target, OXT, could be used to reduce addiction-related behaviors.  相似文献   

3.
    
Cognitive flexibility is essential to modify our behavior in a non-stationary environment and is often explored by reversal learning tasks. The basal ganglia (BG) dopaminergic system, under a top-down control of the pre-frontal cortex, is known to be involved in flexible action selection through reinforcement learning. However, how adaptive dopamine changes regulate this process and learning mechanisms for training the striatal synapses remain open questions. The current study uses a neurocomputational model of the BG, based on dopamine-dependent direct (Go) and indirect (NoGo) pathways, to investigate reinforcement learning in a probabilistic environment through a task that associates different stimuli to different actions. Here, we investigated: the efficacy of several versions of the Hebb rule, based on covariance between pre- and post-synaptic neurons, as well as the required control in phasic dopamine changes crucial to achieving a proper reversal learning. Furthermore, an original mechanism for modulating the phasic dopamine changes is proposed, assuming that the expected reward probability is coded by the activity of the winner Go neuron before a reward/punishment takes place. Simulations show that this original formulation for an automatic phasic dopamine control allows the achievement of a good flexible reversal even in difficult conditions. The current outcomes may contribute to understanding the mechanisms for active control of dopamine changes during flexible behavior. In perspective, it may be applied in neuropsychiatric or neurological disorders, such as Parkinson’s or schizophrenia, in which reinforcement learning is impaired.  相似文献   

4.
    
Perturbations in striatal dopamine (DA) homeostasis might underlie the behavioral and pathobiological consequences of METH use disorder in humans. To identify potential consequences of long-term METH exposure, we modeled the adverse consequence DSM criterion of substance use disorders by giving footshocks to rats that had escalated their intake of METH during a drug self-administration procedure. Next, DA D1 receptor antagonist, SCH23390 was injected. Thereafter, rats were euthanized to measure several indices of the striatal dopaminergic system. Footshocks split the METH rats into two phenotypes: (i) shock-sensitive that decreased their METH-intake and (ii) shock-resistant that continued their METH intake. SCH23390 caused substantial dose-dependent reduction of METH taking in both groups. Stopping SCH23390 caused re-emergence of compulsive METH taking in shock-resistant rats. Compulsive METH takers also exhibited greater incubation of METH seeking than non-compulsive rats during withdrawal from METH SA. Analyses of DA metabolism revealed non-significant decreases (about 35%) in DA levels in resistant and sensitive rats. However, striatal contents of the deaminated metabolites, DOPAL and DOPAC, were significantly increased in sensitive rats. VMAT2 and DAT protein levels were decreased in both phenotypes. Moreover, protein expression levels of the D1-like DA receptor, D5R, and D2-like DA receptors, D3R and D4R, were significantly decreased in the compulsive METH takers. Our results parallel findings in post-mortem striatal tissues of human METH users who develop Parkinsonism after long-term METH intake and support the use of this model to investigate potential therapeutic interventions for METH use disorder.  相似文献   

5.
    
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that impairs the control of attention and behavioral inhibition in affected individuals. Recent genome-wide association findings have revealed an association between glutamate and GABA gene sets and ADHD symptoms. Consistently, people with ADHD show altered glutamate and GABA content in the brain circuitry that is important for attention control function. Yet, it remains unknown how glutamate and GABA content in the attention control circuitry change when people are controlling their attention, and whether these changes can predict impaired attention control in people with ADHD. To study these questions, we recruited 18 adults with ADHD (31–51 years) and 16 adults without ADHD (28–54 years). We studied glutamate + glutamine (Glx) and GABA content in the fronto-striatal circuitry while participants performed attention control tasks. We found that Glx and GABA concentrations at rest did not differ between participants with ADHD or without ADHD. However, while participants were performing the attention control tasks, participants with ADHD showed smaller Glx and GABA increases than participants without ADHD. Notably, smaller GABA increases in participants with ADHD significantly predicted their poor task performance. Together, these findings provide the first demonstration showing that attention control deficits in people with ADHD may be related to insufficient responses of the GABAergic system in the fronto-striatal circuitry.  相似文献   

6.
Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.  相似文献   

7.
    
Loss-of-function mutations in the human vacuolar protein sorting the 13 homolog A (VPS13A) gene cause Chorea-acanthocytosis (ChAc), with selective degeneration of the striatum as the main neuropathologic feature. Very little is known about the VPS13A expression in the brain. The main objective of this work was to assess, for the first time, the spatiotemporal distribution of VPS13A in the mouse brain. We found VPS13A expression present in neurons already in the embryonic stage, with stable levels until adulthood. VPS13A mRNA and protein distributions were similar in the adult mouse brain. We found a widespread VPS13A distribution, with the strongest expression profiles in the pons, hippocampus, and cerebellum. Interestingly, expression was weak in the basal ganglia. VPS13A staining was positive in glutamatergic, GABAergic, and cholinergic neurons, but rarely in glial cells. At the cellular level, VPS13A was mainly located in the soma and neurites, co-localizing with both the endoplasmic reticulum and mitochondria. However, it was not enriched in dendritic spines or the synaptosomal fraction of cortical neurons. In vivo pharmacological modulation of the glutamatergic, dopaminergic or cholinergic systems did not modulate VPS13A concentration in the hippocampus, cerebral cortex, or striatum. These results indicate that VPS13A has remarkable stability in neuronal cells. Understanding the distinct expression pattern of VPS13A can provide relevant information to unravel pathophysiological hallmarks of ChAc.  相似文献   

8.
Haloperidol (1 a), a dopamine (D(2)) receptor antagonist, is in clinical use as an antipsychotic agent. Carbon/silicon exchange (sila-substitution) at the 4-position of the piperidine ring of 1 a (R(3)COH --> R(3)SiOH) leads to sila-haloperidol (1 b). Sila-haloperidol was synthesized in a new multistep synthesis, starting from tetramethoxysilane and taking advantage of the properties of the 2,4,6-trimethoxyphenyl unit as a unique protecting group for silicon. The pharmacological profiles of the C/Si analogues 1 a and 1 b were studied in competitive receptor binding assays at D(1)-D(5), sigma(1), and sigma(2) receptors. Sila-haloperidol (1 b) exhibits significantly different receptor subtype selectivities from haloperidol (1 a) at both receptor families. The C/Si analogues 1 a and 1 b were also studied for 1) their physicochemical properties (log D, pK(a), solubility in HBSS buffer (pH 7.4)), 2) their permeability in a human Caco-2 model, 3) their pharmacokinetic profiles in human and rat liver microsomes, and 4) their inhibition of the five major cytochrome P450 isoforms. In addition, the major in vitro metabolites of sila-haloperidol (1 b) in human liver microsomes were identified using mass-spectrometric techniques. Due to the special chemical properties of silicon, the metabolic fates of the C/Si analogues 1 a and 1 b are totally different.  相似文献   

9.
Synthesis, biological activity, and structure–selectivity relationship (SSR) studies of a novel series of potential dopamine D3 receptor radioligands as imaging agents for positron emission tomography (PET) are reported. Considering a structurally diverse library of D3 ligands, SSR studies were performed for a new series of fluorinated pyridinylphenyl amides using CoMFA and CoMSIA methods. The in vitro D3 affinities of the predicted series of biphenyl amide ligands 9 a – d revealed single‐digit to sub‐nanomolar potencies (Ki=0.52–1.6 nM ), displaying excellent D3 selectivity over the D2 subtype of 110‐ to 210‐fold for the test compounds 9 a – c . Radiofluorination by nucleophilic substitution of Br or NO2 by 18F led to radiochemical yields of 66–92 % for [18F] 9 a – d . However, the specific activities of [18F] 9 b and [18F] 9 d were insufficient, rendering their use for in vivo studies impossible. Biodistribution studies of [18F] 9 a and [18F] 9 c using rat brain autoradiography revealed accumulation in the ventricles, thus indicating insufficient biokinetic properties of [18F] 9 a and [18F] 9 c for D3 receptor imaging in vivo.  相似文献   

10.
Herein we report the synthesis and evaluation of a series of new pramipexole derivatives as highly potent and selective agonists of the dopamine‐3 (D3) receptor. A number of these new compounds bind to the D3 receptor with sub‐nanomolar affinity and show excellent selectivity (>10 000) for the D3 receptor over the D1 and D2 receptors. For example, compound 23 (N‐(cis‐3‐(2‐(((S)‐2‐amino‐4,5,6,7‐tetrahydrobenzo[d]thiazol‐6‐yl)(propyl)amino)ethyl)‐3‐hydroxycyclobutyl)‐3‐(5‐methyl‐1,2,4‐oxadiazol‐3‐yl)benzamide) binds to the D3 receptor with a Ki value of 0.53 nM and shows a selectivity of >20 000 over the D2 and D1 receptors in the binding assays using a rat brain preparation. It has excellent stability in human liver microsomes. Moreover, in vitro functional assays showed it to be a full agonist for the human D3 receptor.  相似文献   

11.
A competitive MS binding assay employing spiperone as a native marker and a porcine striatal membrane fraction as a source for dopamine D2 receptors in a nonvolatile buffer has been established. Binding of the test compounds to the target was monitored by mass-spectrometric quantification of the nonbound marker, spiperone, in the supernatant of the binding samples obtained by centrifugation. A solid-phase extraction procedure was used for separating spiperone from ESI-MS-incompatible supernatant matrix components. Subsequently, the marker was reliably quantified by LC-ESI-MS-MS by using haloperidol as an internal standard. The affinities of the test compounds, the dopamine receptor antagonists (+)-butaclamol, chlorpromazine and (S)-sulpiride obtained from the competitive MS binding assay were verified by corresponding radioligand binding experiments with [3H]spiperone. The results of this study demonstrate that competitive MS binding assays represent a universally applicable alternative to conventional radioligand binding assays.  相似文献   

12.
    
Fine temperature control is essential in homeothermic animals. Both hyper- and hypothermia can have deleterious effects. Multiple, efficient and partly redundant mechanisms of adjusting the body temperature to the value set by the internal thermostat exist. The neural circuitry of temperature control and the neurotransmitters involved are reviewed. The GABAergic inhibitory output from the brain thermostat in the preoptic area POA to subaltern neural circuitry of temperature control (Nucleus Raphe Dorsalis and Nucleus Raphe Pallidus) is a function of the balance between the (opposite) effects mediated by the transient receptor potential receptor TRPM2 and EP3 prostaglandin receptors. Activation of TRPM2-expressing neurons in POA favors hypothermia, while inhibition has the opposite effect. Conversely, EP3 receptors induce elevation in body temperature. Activation of EP3-expressing neurons in POA results in hyperthermia, while inhibition has the opposite effect. Agonists at TRPM2 and/or antagonists at EP3 could be beneficial in hyperthermia control. Activity of the neural circuitry of temperature control is modulated by a variety of 5-HT receptors. Based on the theoretical model presented the “ideal” antidote against serotonin syndrome hyperthermia appears to be an antagonist at the 5-HT receptor subtypes 2, 4 and 6 and an agonist at the receptor subtypes 1, 3 and 7. Very broadly speaking, such a profile translates in a sympatholytic effect. While a compound with such an ideal profile is presently not available, better matches than the conventional antidote cyproheptadine (used off-label in severe serotonin syndrome cases) appear to be possible and need to be identified.  相似文献   

13.
Blue makes it happen : The non‐uniform charge distribution of the blue colored azulene framework is highly suitable for the bioisosteric replacement of bicyclic heteroarene moieties. Showing an analogous binding mode as heterocyclic dopamine D4 receptor‐selective lead compounds, the induction of penile erection in rats over a greater range of doses indicates a putative advantage of the rationally developed azulene derivative 2 b over apomorphine.

  相似文献   


14.
15.
    
We aimed to investigate A2A receptors in the basal ganglia of a DYT1 mouse model of dystonia. A2A was studied in control Tor1a+/+ and Tor1a+/− knock-out mice. A2A expression was assessed by anti-A2A antibody immunofluorescence and Western blotting. The co-localization of A2A was studied in striatal cholinergic interneurons identified by anti-choline-acetyltransferase (ChAT) antibody. A2A mRNA and cyclic adenosine monophosphate (cAMP) contents were also assessed. In Tor1a+/+, Western blotting detected an A2A 45 kDa band, which was stronger in the striatum and the globus pallidus than in the entopeduncular nucleus. Moreover, in Tor1a+/+, immunofluorescence showed A2A roundish aggregates, 0.3–0.4 μm in diameter, denser in the neuropil of the striatum and the globus pallidus than in the entopeduncular nucleus. In Tor1a+/−, A2A Western blotting expression and immunofluorescence aggregates appeared either increased in the striatum and the globus pallidus, or reduced in the entopeduncular nucleus. Moreover, in Tor1a+/−, A2A aggregates appeared increased in number on ChAT positive interneurons compared to Tor1a+/+. Finally, in Tor1a+/−, an increased content of cAMP signal was detected in the striatum, while significant levels of A2A mRNA were neo-expressed in the globus pallidus. In Tor1a+/−, opposite changes of A2A receptors’ expression in the striatal-pallidal complex and the entopeduncular nucleus suggest that the pathophysiology of dystonia is critically dependent on a composite functional imbalance of the indirect over the direct pathway in basal ganglia.  相似文献   

16.
    
The pedunculopontine tegmental nucleus (PPN) regulates the activity of dopaminergic cells in the ventral tegmental area (VTA). In this study, the role of opioid receptors (OR) in the PPN on motivated behaviors was investigated by using a model of feeding induced by electrical VTA-stimulation (Es-VTA) in rats (male Wistar; n = 91). We found that the OR excitation by morphine and their blocking by naloxone within the PPN caused a change in the analyzed motivational behavior and neuronal activation. The opioid injections into the PPN resulted in a marked, dose-dependent increase/decrease in latency to feeding response (FR), which corresponded with increased neuronal activity (c-Fos protein), in most of the analyzed brain structures. Morphine dosed at 1.25/1.5 µg into the PPN significantly reduced behavior induced by Es-VTA, whereas morphine dosed at 0.25/0.5 µg into the PPN did not affect this behavior. The opposite effect was observed after the naloxone injection into the PPN, where its lowest doses of 2.5/5.0 μg shortened the FR latency. However, its highest dose of 25.0 μg into the PPN nucleus did not cause FR latency changes. In conclusion, the level of OR arousal in the PPN can modulate the activity of the reward system.  相似文献   

17.
    
Melatonin exerts its actions through membrane MT1/MT2 melatonin receptors, which belong to the super family of G-protein-coupled receptors consisting of the typical seven transmembrane domains. MT1 and MT2 receptors are expressed in various tissues of the body either as single ones or together. A growing literature suggests that the melatonergic system may be involved in the pathophysiology of mood and anxiety disorders. In fact, some core symptoms of depression show disturbance of the circadian rhythm in their clinical expression, such as diurnal mood and other symptomatic variation, or are closely linked to circadian system functioning, such as sleep-wake cycle alterations. In addition, alterations have been described in the circadian rhythms of several biological markers in depressed patients. Therefore, there is interest in developing antidepressants that have a chronobiotic effect (i.e., treatment of circadian rhythm disorders). As melatonin produces chronobiotic effects, efforts have been aimed at developing agomelatine, an antidepressant with melatonin agonist activity. The present paper reviews the role of the melatonergic system in the pathophysiology of mood and anxiety disorders and the clinical characteristics of agomelatine. Implications of agomelatine in “real world” clinical practice will be also discussed.  相似文献   

18.
    
Background: an increased prevalence of gastro-duodenal ulceration was described almost sixty years ago as prodromal to idiopathic Parkinson’s disease, while duodenal ulcers have been rarely diagnosed in patients with schizophrenia. The cytoprotective role of dopamine in animal models of gastrointestinal ulcerations has also been described. Interestingly, Parkinson’s disease (PD) might share common pathophysiological links with inflammatory bowel disease (IBD) as epidemiological and genetic links already suggest. Thus, the aim of our study was to review the existing literature on the role of the gastrointestinal dopaminergic system in IBD pathogenesis and progression. Methods: a systematic search was conducted according to the PRISMA methodology. Results: twenty-four studies satisfied the predetermined criteria and were included in our qualitative analysis. Due to different observations (cross-sectional studies) as well as experimental setups and applied methodologies (in vivo and in vitro studies) a meta-analysis could not be performed. No ongoing clinical trials with dopaminergic compounds in IBD patients were found. Conclusions: the impairment of the dopaminergic system seems to be a significant, yet underestimated, feature of IBD, and more in-depth observational studies are needed to further support the existing preclinical data.  相似文献   

19.
    
The D2 subunit dopamine receptor represents a key factor in modulating dopamine release. Moreover, the investigated radiopharmaceutical ligands used in positron emission tomography imaging techniques are known to bind D2 receptors, allowing for dopaminergic pathways quantification in the living human brain. Thus, the biophysical characterization of these radioligands is expected to provide additional insights into the interaction mechanisms between the vehicle molecules and their targets. Using molecular dynamics simulations and QM calculations, the present study aimed to investigate the potential positions in which the D2 dopamine receptor would most likely interact with the three distinctive synthetic 11C-labeled compounds (raclopride (3,5-dichloro-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2-hydroxy-6-methoxybenzamide)—RACL, FLB457 (5-bromo-N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-2,3-dimethoxybenzamide)—FLB457 and SCH23390 (R(+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine)—SCH)), as well as to estimate the binding affinities of the ligand-receptor complexes. A docking study was performed prior to multiple 50 ns molecular dynamics productions for the ligands situated at the top and bottom interacting pockets of the receptor. The most prominent motions for the RACL ligand were described by the high fluctuations of the peripheral aliphatic -CH3 groups and by its C-Cl aromatic ring groups. In good agreement with the experimental data, the D2 dopamine receptor-RACL complex showed the highest interacting patterns for ligands docked at the receptor’s top position.  相似文献   

20.
A series of 37 benzolactam derivatives were synthesized, and their respective affinities for the dopamine D2 and D3 receptors evaluated. The relationships between structures and binding affinities were investigated using both ligand‐based (3D‐QSAR) and receptor‐based methods. The results revealed the importance of diverse structural features in explaining the differences in the observed affinities, such as the location of the benzolactam carbonyl oxygen, or the overall length of the compounds. The optimal values for such ligand properties are slightly different for the D2 and D3 receptors, even though the binding sites present a very high degree of homology. We explain these differences by the presence of a hydrogen bond network in the D2 receptor which is absent in the D3 receptor and limits the dimensions of the binding pocket, causing residues in helix 7 to become less accessible. The implications of these results for the design of more potent and selective benzolactam derivatives are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号