首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
针对"当前"统计模型下的卡尔曼滤波算法在跟踪匀速目标时误差较大的缺陷和强跟踪滤波器对非机动部分跟踪精度不理想的缺陷。通过改进基于截断正态分布下的加速度方差模型,提高了对非机动目标的跟踪精度;对卡尔曼滤波算法中预测误差协方差及渐消因子的计算作出修正,改进机动部分和非机动部分的精度;将目前常用的估计协方差的计算公式采用Joseph公式,增强数值的稳定性和算法的鲁棒性。仿真和实践结果表明该算法具有良好的性能。  相似文献   

2.
针对Singer模型算法中假设的不合理性,提出了基于截断正态概率密度模型的机动目标跟踪算法,给出了非零时间相关模型及目标加速度的截断正态概率密度模型,并结合Kalman滤波算法得出目标加速度的截断正态概率密度模型的自适应滤波系统流程图,最后针对实际目标机动情况对其进行仿真计算,结果验证了该算法的良好跟踪性能。  相似文献   

3.
在分析雷达对远距离机动目标跟踪速度精度要求和存在困难的基础上,提出了一种提高三坐标雷达速度估计精度的滤波算法。该算法将三维空间中目标的运动描述为切向和法向加速度机动的非线性状态方程,采用机动目标"当前"统计模型,建立了基于雷达三坐标测量的自适应扩展卡尔曼滤波算法。仿真结果表明,该算法可明显提高远距离目标机动段的速度精度。  相似文献   

4.
钱广华  李颖  骆荣剑 《雷达学报》2013,2(2):257-264
在机动目标跟踪中,当前统计模型(Current Statistical model, CS)需要预先依据经验设定机动频率和加速度极限值,当预先设定的值与目标的实际运动状态不一致时,将造成较大的跟踪误差。为克服上述问题,该文首先从当前统计模型的离散状态方程中,导出了一种机动频率自适应算法,然后对张安清及巴宏欣等人提出的加速度方差自适应算法进行了改进。仿真实验表明,在综合运用上述机动频率自适应和加速度方差自适应算法的基础上,对CS 模型修改后,得到的机动目标跟踪自适应滤波算法(Mending CS based Adaptive Filtering algorithm,MAF),能够有效增强基于CS 模型的机动目标跟踪自适应滤波算法(CS based Adaptive Filtering algorithm, AF)对目标运动状态变化的自适应能力,并且在低噪声环境下,跟踪精度比AF 算法有所提高,算法收敛速度可达到AF 算法的2 倍,在强噪声环境下,目标机动阶段的跟踪精度提高近2 倍,匀速阶段的精度与AF 算法相当,算法的收敛速度可达到AF 算法的4~10 倍,因此,MAF 算法具有较强的抗干扰能力。   相似文献   

5.
一种新的机动目标跟踪的多模型算法   总被引:11,自引:0,他引:11  
采用带渐消因子的当前统计模型与匀速运动模型进行交互,设计了一种新的机动目标跟踪的交互式多模型算法。当前统计模型具有对一般机动目标跟踪精度高的特点,通过渐消因子的引入增强了该模型对突发机动的自适应跟踪能力,同时通过与CV模型的交互保证了对非机动目标的跟踪性能。仿真结果表明,在跟踪一般机动目标时,其误差和当前统计模型与CV模型交互的IMM算法相当;在跟踪突发机动目标时,该文算法的误差明显小于当前统计模型与CV交互的IMM算法。  相似文献   

6.
标准的基于”当前”统计模型的自适应卡尔曼滤波算法中机动频率和加速度极限值存在靠经验预先设定的问题,以及在跟踪非机动和弱机动目标时存在精度不高的问题,本文在分析已有的加速度方差自适应算法的基础上,提出了一种改进的加速度方差自适应算法.仿真结果表明本文提出的改进的加速度方差自适应算法是有效性的,较已有算法提高了跟踪非机动或弱机动目标的精度.  相似文献   

7.
机动目标跟踪的一种模糊算法   总被引:8,自引:2,他引:8  
嵇成新  张永胜 《现代雷达》2002,24(6):35-38,55
研究了模糊交互多模型算法(FIMM)和基于当前统计模型(CS)的自适应滤波算法,提出了一种基于当前统计模型的模糊交互多模型算法(CSFIMM)。该算法克服了模糊交互多模型算法精度较低和当前统计模型自适应滤波器方差调整有限的缺点。通过仿真,对所提出的算法和交互多模型(IMM)算法以及FIMM算法在估计精度和计算量两个方面进行了比较。  相似文献   

8.
为了克服"当前"统计模型下的卡尔曼滤波算法在跟踪匀速目标时误差较大的缺陷,文章分析了造成此缺陷的原因,通过改进基于截断正态分布下的加速度方差模型,提高了对非机动目标的跟踪精度,仿真结果表明,该算法能够准确描述各种机动情况。  相似文献   

9.
机动目标跟踪广泛应用于军事和民用领域。机动目标跟踪的主要问题之一是建立未知的目标加速度模型。本文阐述了一种跟踪机动目标的机动加速度统计模型--“当前”统计模型,并推导了基于此模型的自适应Kalman跟踪算法。这种模型和算法适用于每一种具体的战术场合和目标机动的当前状况。能够正确直接地估计出机动目标的当前状态,不存在任何估计滞后与修正问题。  相似文献   

10.
机动目标自适应高斯模型与跟踪算法   总被引:4,自引:0,他引:4  
党建武  黄建国 《电讯技术》2003,43(2):109-113,119
提出了一种描述机动目标运动状态的自适应高斯模型,在这种模型中,机动目标的加速度被认为是具有非零均值、时间相关的随机过程,并假定其概率密度函数服从高斯分布。指出了机动目标运动模型的均值和方差与目标机动加速度最佳当前估计值之间的关系,在此基础上,提出了相应的自适应卡尔曼滤波算法。仿真结果表明,该算法对机动目标在不同机动方式下的位置、速度和加速度均有良好的跟踪效果,且所需计算量小。  相似文献   

11.
交互式多模型机动目标跟踪方法的仿真   总被引:1,自引:0,他引:1  
尹瑞  王荫槐  王峰 《现代雷达》2007,29(7):52-54
分析和研究利用CV模型和CA模型交互、CV模型和Singer模型交互、CV模型和“当前”统计模型交互分别对单机动目标进行跟踪。通过大量的计算机模拟仿真,比较了不同的模型组合在各种参数情况下的滤波性能,并且比较其和卡尔曼滤波(Singer模型)性能的优劣性,得出了一些有意义的结论。  相似文献   

12.
张俊根 《电讯技术》2024,64(4):591-597
针对现有交互多模型箱粒子滤波(Interacting Multiple Model Box Particle Filter,IMMBPF)算法在区间量测目标跟踪过程中模型切换和跟踪精度方面的不足,结合自适应交互多模型算法,提出了一种自适应交互多模型箱粒子滤波(Adaptive IMMBPF,AIMMBPF)算法。该算法利用模型似然后验信息构建修正因子,并结合阈值对马尔可夫转移概率矩阵进行自适应修正,使得匹配模型的概率快速增大,并且可以减小非匹配模型的影响,即使在目标运动模型先验信息不足或者不准确情况下,也能对模型转移概率进行自适应更新。对于量测常受到未知分布和偏差的区间误差所影响而呈现区间形式的问题,将箱粒子代替普通粒子,拟合后验概率密度从而进行滤波。仿真结果表明,相比于原有算法,该算法在区间量测机动目标跟踪的应用中,拥有更优的模型匹配度和目标跟踪精度。  相似文献   

13.
一种实现机动目标跟踪的STF动态模型PDA算法   总被引:1,自引:0,他引:1       下载免费PDF全文
徐毓  杨瑞娟  周焰 《电子学报》2003,31(7):981-984
本文提出了一种基于强跟踪滤波器(STF)的模型结构动态调整的概率数据关联算法(STF-PDA).该算法提高了概率数据关联(PDA)算法的性能.在跟踪目标,尤其是在跟踪机动目标的性能上,理论分析表明该算法比基于KF或EKF的PDA方法优越.且与基于KF和EKF的PDA算法进行了实验结果比较,结果表明,本文提出的算法更为有效.  相似文献   

14.
用于机动目标跟踪的多模型算法进展   总被引:4,自引:0,他引:4  
对多模型算法的发展过程进行了简单的回顾和评述,通过分析固定结构多模型算法的局限性,得出变结构多模型算法的使用时机。  相似文献   

15.
基于STF的"当前"统计模型及自适应跟踪算法   总被引:16,自引:1,他引:16  
范小军  刘锋  秦勇  张军 《电子学报》2006,34(6):981-984
在"当前"统计模型(CS)的基础上,提出了一种新的机动目标自适应跟踪算法STF-CS.该算法通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,增强了系统对突发机动的自适应跟踪能力,同时保留了"当前"统计模型跟踪算法对一般机动目标跟踪精度高的特点.仿真结果表明,在跟踪一般机动目标时,其误差和"当前"统计模型算法相当;在跟踪突发机动目标时,本文算法的误差明显小于"当前"统计模型及自适应算法.  相似文献   

16.
针对机动目标跟踪问题,提出了一种IMM-RDCKF算法。首先充分利用量测方程中只有部分状态变量是非线性的特点,对于非线性的量测方程采用降维滤波方法,可以在保障跟踪精度条件下减小计算量。其次,对IMM算法中的转移概率矩阵进行实时估计,提高了模型匹配概率。再次,滤波过程中由于误差累积可能导致协方差矩阵失去正定性,对算法进行了优化,确保了滤波过程中协方差矩阵的正定性,提高了算法稳定性。Monte-Carlo仿真结果表明,与CKF算法相比,该算法的跟踪精度有明显的提高,计算效率提高了一倍。  相似文献   

17.
为提高运动多站对机动目标的无源跟踪性能,提出了一种新的基于交互式多模型-边缘化卡尔曼滤波(IMM-MKF)的机动目标跟踪算法。该算法将交互式多模型(IMM)结构和边缘化卡尔曼滤波(MKF)结合,利用MKF算法对每个模型进行滤波,对滤波结果进行交互作用来得到跟踪结果。以只测角机动目标跟踪为例对所提算法进行仿真分析,仿真结果表明,相对于采用扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)及容积卡尔曼滤波(CKF)算法的典型交互式多模型算法,所提算法具有更好的跟踪性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号