共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
3.
在分析雷达对远距离机动目标跟踪速度精度要求和存在困难的基础上,提出了一种提高三坐标雷达速度估计精度的滤波算法。该算法将三维空间中目标的运动描述为切向和法向加速度机动的非线性状态方程,采用机动目标"当前"统计模型,建立了基于雷达三坐标测量的自适应扩展卡尔曼滤波算法。仿真结果表明,该算法可明显提高远距离目标机动段的速度精度。 相似文献
4.
在机动目标跟踪中,当前统计模型(Current Statistical model, CS)需要预先依据经验设定机动频率和加速度极限值,当预先设定的值与目标的实际运动状态不一致时,将造成较大的跟踪误差。为克服上述问题,该文首先从当前统计模型的离散状态方程中,导出了一种机动频率自适应算法,然后对张安清及巴宏欣等人提出的加速度方差自适应算法进行了改进。仿真实验表明,在综合运用上述机动频率自适应和加速度方差自适应算法的基础上,对CS 模型修改后,得到的机动目标跟踪自适应滤波算法(Mending CS based Adaptive Filtering algorithm,MAF),能够有效增强基于CS 模型的机动目标跟踪自适应滤波算法(CS based Adaptive Filtering algorithm, AF)对目标运动状态变化的自适应能力,并且在低噪声环境下,跟踪精度比AF 算法有所提高,算法收敛速度可达到AF 算法的2 倍,在强噪声环境下,目标机动阶段的跟踪精度提高近2 倍,匀速阶段的精度与AF 算法相当,算法的收敛速度可达到AF 算法的4~10 倍,因此,MAF 算法具有较强的抗干扰能力。 相似文献
5.
一种新的机动目标跟踪的多模型算法 总被引:11,自引:0,他引:11
采用带渐消因子的当前统计模型与匀速运动模型进行交互,设计了一种新的机动目标跟踪的交互式多模型算法。当前统计模型具有对一般机动目标跟踪精度高的特点,通过渐消因子的引入增强了该模型对突发机动的自适应跟踪能力,同时通过与CV模型的交互保证了对非机动目标的跟踪性能。仿真结果表明,在跟踪一般机动目标时,其误差和当前统计模型与CV模型交互的IMM算法相当;在跟踪突发机动目标时,该文算法的误差明显小于当前统计模型与CV交互的IMM算法。 相似文献
6.
7.
机动目标跟踪的一种模糊算法 总被引:8,自引:2,他引:8
研究了模糊交互多模型算法(FIMM)和基于当前统计模型(CS)的自适应滤波算法,提出了一种基于当前统计模型的模糊交互多模型算法(CSFIMM)。该算法克服了模糊交互多模型算法精度较低和当前统计模型自适应滤波器方差调整有限的缺点。通过仿真,对所提出的算法和交互多模型(IMM)算法以及FIMM算法在估计精度和计算量两个方面进行了比较。 相似文献
8.
9.
机动目标跟踪广泛应用于军事和民用领域。机动目标跟踪的主要问题之一是建立未知的目标加速度模型。本文阐述了一种跟踪机动目标的机动加速度统计模型--“当前”统计模型,并推导了基于此模型的自适应Kalman跟踪算法。这种模型和算法适用于每一种具体的战术场合和目标机动的当前状况。能够正确直接地估计出机动目标的当前状态,不存在任何估计滞后与修正问题。 相似文献
10.
机动目标自适应高斯模型与跟踪算法 总被引:4,自引:0,他引:4
提出了一种描述机动目标运动状态的自适应高斯模型,在这种模型中,机动目标的加速度被认为是具有非零均值、时间相关的随机过程,并假定其概率密度函数服从高斯分布。指出了机动目标运动模型的均值和方差与目标机动加速度最佳当前估计值之间的关系,在此基础上,提出了相应的自适应卡尔曼滤波算法。仿真结果表明,该算法对机动目标在不同机动方式下的位置、速度和加速度均有良好的跟踪效果,且所需计算量小。 相似文献
11.
12.
针对现有交互多模型箱粒子滤波(Interacting Multiple Model Box Particle Filter,IMMBPF)算法在区间量测目标跟踪过程中模型切换和跟踪精度方面的不足,结合自适应交互多模型算法,提出了一种自适应交互多模型箱粒子滤波(Adaptive IMMBPF,AIMMBPF)算法。该算法利用模型似然后验信息构建修正因子,并结合阈值对马尔可夫转移概率矩阵进行自适应修正,使得匹配模型的概率快速增大,并且可以减小非匹配模型的影响,即使在目标运动模型先验信息不足或者不准确情况下,也能对模型转移概率进行自适应更新。对于量测常受到未知分布和偏差的区间误差所影响而呈现区间形式的问题,将箱粒子代替普通粒子,拟合后验概率密度从而进行滤波。仿真结果表明,相比于原有算法,该算法在区间量测机动目标跟踪的应用中,拥有更优的模型匹配度和目标跟踪精度。 相似文献
13.
14.
15.
16.
针对机动目标跟踪问题,提出了一种IMM-RDCKF算法。首先充分利用量测方程中只有部分状态变量是非线性的特点,对于非线性的量测方程采用降维滤波方法,可以在保障跟踪精度条件下减小计算量。其次,对IMM算法中的转移概率矩阵进行实时估计,提高了模型匹配概率。再次,滤波过程中由于误差累积可能导致协方差矩阵失去正定性,对算法进行了优化,确保了滤波过程中协方差矩阵的正定性,提高了算法稳定性。Monte-Carlo仿真结果表明,与CKF算法相比,该算法的跟踪精度有明显的提高,计算效率提高了一倍。 相似文献
17.
为提高运动多站对机动目标的无源跟踪性能,提出了一种新的基于交互式多模型-边缘化卡尔曼滤波(IMM-MKF)的机动目标跟踪算法。该算法将交互式多模型(IMM)结构和边缘化卡尔曼滤波(MKF)结合,利用MKF算法对每个模型进行滤波,对滤波结果进行交互作用来得到跟踪结果。以只测角机动目标跟踪为例对所提算法进行仿真分析,仿真结果表明,相对于采用扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)及容积卡尔曼滤波(CKF)算法的典型交互式多模型算法,所提算法具有更好的跟踪性能。 相似文献