首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been reported that naloxone, an opioid antagonist, has antiarrhythmic activity in vivo. In Langendorff perfused rat hearts, we found that ischemia-reperfusion-induced ventricular tachyarrhythmia reverted to normal sinus rhythm after the treatment with naloxone (3 approximately 10 microM). The method of voltage and current clamp were used to study the underlying mechanism of its antiarrhythmic activity on isolated cardiac myocytes. In isolated rat ventricular and in guinea-pig and human atrial myocytes, naloxone prolonged the action potential duration reversibly. In rat ventricular myocytes, naloxone (1 approximately 30 microM) inhibited sodium current (I(Na)), transient outward potassium current (I(to)), and calcium current (I(Ca)). On the contrary, the addition of naloxone significantly increased inward rectifier potassium current (I(K1)). For the effect on I(Na), naloxone did not shift the inactivation curve of I(Na) but retarded the I(Na) recovery rate from inactivation state. Naloxone suppressed I(to) with a significant left-shift of the inactivation curve, however, the time course of I(to) recovery from inactivation was not affected. In guinea pig atrial myocytes, naloxone (10 microM) decreased the delayed rectifier K+ current (IK). These results show that naloxone exert various extent of inhibition on I(Na), I(to), IK and I(Ca). The prolongation of cardiac action potential is related to the inhibition of I(to) and IK. The antiarrhythmic activity of naloxone is more closely related to the inhibition of Na+ and K+ currents rather than the blockade of myocardial opioid receptors.  相似文献   

2.
We recently reported that mutations in HERG, a potassium channel gene, cause long QT syndrome. Heterologous expression of HERG in Xenopus oocytes revealed that this channel had biophysical properties nearly identical to a cardiac delayed rectifier K+ current I(Kr), but had dissimilar pharmacological properties. Class III antiarrhythmic drugs such as E-4031 and MK-499 are potent and specific blockers of I (Kr) in cardiac myocytes. Our initial studies indicated that these compounds did not block HERG at a concentration of 1 micromol/L. In the present study, we used standard two-microelectrode voltage-clamp techniques to further characterize the effects of these drugs on HERG channels expressed in oocytes. Consistent with initial findings, 1 micromol/L MK-499 and E-4031 had not effect on HERG when oocytes were voltage clamped at a negative potential and not pulsed during equilibration with the drug. However, MK-499 did block HERG current if oocytes were repetitively pulsed, or clamped at a voltage positive to the threshold potential for channel activation. This finding is in contrast to previous studies that showed significant block of I(Kr) in isolated myocytes by similar drugs, even in the absence of pulsing. This apparent discrepancy may be due to differences in channel characteristics (HERG versus guinea pig and mouse I (Kr)), tissue (oocytes versus myocytes), or specific drugs. Under steady state conditions, block of HERG by MK-499 was half maximal at 123 +/- 12 nmol/L at a test potential of -20 mV. MK-499 (150 nmol/L) did not affect the voltage dependence of activation and rectification nor the kinetics of activation and deactivation of HERG. These data indicate that MK-499 preferentially blocks open HERG channels and further support the conclusion that HERG subunits form I(Kr) channels in cardiac myocytes.  相似文献   

3.
It is well-established that in heart, both the L-type Ca2+ channel and the cystic fibrosis transmembrane conductance regulator Cl- channel are regulated by cAMP-dependent phosphorylation. However, it is not clear whether both of these channels are regulated in concert by protein kinase A (PKA) or whether there are mechanisms that independently control the phosphorylation of these two PKA targets. The purpose of this study was to compare the effects of various protein phosphatase and protein kinase inhibitors on these two ionic currents (ICa and ICl) in guinea pig ventricular myocytes to gain insight into these questions. We found that both the stimulation and washout of the effects of isoproterenol on ICl are about twice as fast as the effects on ICa, probably because the dephosphorylation reaction for ICl is faster than that for ICa. In contrast, inhibition of protein phosphatases with 10 microM microcystin stimulated both ICa and ICl, but the stimulation of ICl was much slower and smaller than the stimulation of ICa. The effect of microcystin was inhibited by staurosporine (Ki = 171.5 and 161 nM for ICa and ICl, respectively), suggesting that the stimulation was due to a kinase. The kinase was not protein kinase C (PKC) because it was not inhibited by the specific pseudosubstrate inhibitor of PKC, PKC(19-31), and it was not PKA because it was not inhibited by adenosine 3',5'-cyclic phosphorothioate. These results suggest that although both the Ca2+ and Cl- channels are regulated by cAMP-dependent phosphorylation, another protein kinase may also regulate these channels, and the kinetics of the response of the channels to phosphorylation can be modulated independently by protein phosphatases.  相似文献   

4.
The delayed rectifier potassium current (IK) is a major repolarizing current in guinea pig ventricular myocytes. Blockade of IK or other repolarizing currents is of increasing interest for development of antiarrhythmic drugs; however, these interventions may also be proarrhythmic. In the present study, we compared the potential antiarrhythmic properties of indapamide and chlorthalidone, two structurally related sulfonamide diuretics which differ in their ability to block the slow component of the delayed rectifier (IKs) in isolated, buffer-perfused guinea pig hearts. Hearts underwent 30-min global no-flow ischemia and 10-min reperfusion. Dose-response (10(-7)-10(-4) M) effects of indapamide or chlorthalidone on reperfusion-induced arrhythmias, coronary flow, and heart rate (HR) were evaluated in a randomized blinded fashion. There was no significant difference in the incidence of ventricular fibrillation (VF) for either compound as compared with untreated controls. However, VF duration was reduced to < 40 s in all hearts treated with indapamide 10(-4) M). Mean VF duration with indapamide 10(-4) M was 31 +/- 4 versus 70 +/- 40 s in controls (p < 0.05). Chlorthalidone did not protect against reperfusion-induced arrhythmias. HR was unchanged with either compound; coronary flow during the control perfusion period increased approximately 43% with indapamide 10(-4) M (p < 0.05 vs. all treatment groups). These results demonstrate that indapamide, but not chlorthalidone, confers significant protection against reperfusion-induced VF in this experimental preparation and suggest that selective block of IKs may be antiarrhythmic.  相似文献   

5.
Chronic atrial fibrillation is associated with a shortening of the atrial action potential duration and atrial refractory period. To test the hypothesis that these changes are mediated by changes in the density of specific atrial K+ currents, we compared the density of K+ currents in left and right atrial myocytes and the density of delayed rectifier K+ channel alpha-subunit proteins (Kv1.5 and Kv2.1) in left and right atrial appendages from patients (n = 28) in normal sinus rhythm with those from patients (n = 15) in chronic atrial fibrillation (AF). Contrary to our expectations, nystatin-perforated patch recordings of whole-cell K+ currents revealed significant reductions in both the inactivating (ITO) and sustained (IKsus) outward K+ current densities in left and right atrial myocytes isolated from patients in chronic AF, relative to the ITO and IKsus densities in myocytes isolated from patients in normal sinus rhythm. Quantitative Western blot analysis revealed that although there was no change in the expression of the Kv2.1 protein, the expression of Kv1.5 protein was reduced by > 50% in both the left and the right atrial appendages of AF patients. The finding that Kv1.5 expression is reduced in parallel with the reduction in delayed rectifier K+ current density is consistent with recent suggestions that Kv1.5 underlies the major component of the delayed rectifier K+ current in human atrial myocytes, the ultrarapid delayed rectifier K+ current, IKur. The unexpected finding of reduced voltage-gated outward K+ current densities in atrial myocytes from AF patients demonstrates the need to further examine the details of the electrophysiological remodeling that occurs during AF to enable more effective and safer therapeutic strategies to be developed.  相似文献   

6.
We studied the effects of NE-10064 (azimilide), a new antiarrhythmic agent reported to be a selective blocker of the slowly activating component of the delayed rectifier, IKs. In ferret papillary muscles, NE-10064 increased effective refractory period (ERP) and decreased isometric twitch tension in a concentration-dependent manner (0.3-30 microM). Increases in ERP showed reverse use-dependence, and were greater at 1 than at 3 Hz. In contrast, changes in tension were use dependent, with larger decreases observed at 3 than at 1 Hz. In guinea pig ventricular myocytes, NE-10064 (0.3-3 microM) significantly prolonged action potential duration (APD) at 1 Hz. At 3 Hz, NE-10064 (0.3-1 microM) increased APD only slightly, and at 10 microM decreased APD and the plateau potential. NE-10064 potently blocked the rapidly activating component of the delayed rectifier, IKr (IC50 0.4 microM), and inhibited IKs (IC50 3 microM) with nearly 10-fold less potency. NE-10064 (10 microM) did not block the inward rectifier potassium current (IKl). NE-10064 (10 microM) blocked the L-type calcium current (ICa) in a use-dependent manner; block was greater at 3 than at 1 Hz. We conclude that (a) NE-10064's block of potassium currents is relatively selective for IKr over IKs, (b) NE-10064 inhibits ICa in a use-dependent fashion, and (c) NE-10064's effects on ERP and tension in papillary muscle as well as APD and action potential plateau level in myocytes may be explained by its potassium and calcium channel blocking properties.  相似文献   

7.
Direct effects of ONO-1101 ?(-)-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl-3-[4-[(S) -2-hydroxy-3-(2-morpholino carbonylamino)ethylamino] propoxy]phenylpropionate monohydrochloride), a novel beta-antagonist, on action potential parameters and membrane currents, and its beta adrenoceptor antagonism were examined in cardiac muscle. Action potential-parameters in papillary muscle of reserpinized animals and membrane currents recorded from single myocytes obtained from guinea pig and rabbit hearts were not affected by 1 to 100 microM ONO-1101. On the other hand, ONO-1101 markedly inhibited the potentiation of Ca current by isoproterenol in single cardiac myocytes of the guinea pig. The concentration-response relationship of Ca current for isoproterenol was shifted to the right. This effect resembled that of esmolol, which is also a beta adrenoceptor antagonist. A Schild plot analysis revealed the slope and pA2 value of each antagonist (ONO-1101, 0.94, 8.0; and esmolol, 0.98, 7.3, respectively) and demonstrated that ONO-1101 is about 5 times more potent than esmolol as a beta-antagonist. Two other effects of isoproterenol: 1) potentiation of delayed rectifier K current and 2) activation of chloride current, were also inhibited by ONO-1101. The time required for 50% removal of beta-antagonism of ONO-1101 and esmolol after the washout was estimated as 4 and 6 min, respectively, in depolarized papillary muscle. These results suggest that ONO-1101 is a potent beta-antagonist whose effects were removed quickly by washout. When applied at what is thought to be a clinical dosage, ONO-1101 had no direct effects on action potential-parameters and membrane currents in cardiac muscle. These characteristics of ONO-1101 suggest that this agent may be effective in clinical use.  相似文献   

8.
OBJECTIVES: The aim of this study was to determine the effects of Cl- channel blockers on the cardiac cystic fibrosis transmembrane conductance regulator (CFTR) Cl- current (ICl) and the protein kinase A-regulated L-type calcium current (PKA-ICa). METHODS: Whole-cell ICl and ICa were recorded from isolated guinea pig ventricular myocytes using the patch clamp technique during stimulation of PKA by forskolin (1 or 2 microM). RESULTS: The inhibitory effects of clofibric acid, p-chlorophenoxy propionic acid, gemfibrozil, diphenylamine-2-carboxylate (DPC), anthracene-9-carboxylate, 4,4'dinitrostilbene-2,2'-disulfonic acid and indanyloxyacetic acid 94 were examined on the two currents. Clofibric acid (1 mM), p-chlorophenoxy propionic acid (1 mM) and gemfibrozil (250 microM) produced an approximate 50% decrease in ICl, but had no effect on the PKA-ICa. Surprisingly, application of DPC (500 microM and 1 mM) and anthracene-9-carboxylate (500 microM) strongly reduced both currents. However, inhibition of the Ca2+ and Cl- channels by DPC could be differentiated in two important ways. First, increasing the pH of the external solution from 7.4 to 10.0 prevented the block of ICl by DPC, but did not attenuate the reduction in the PKA-ICa. Second, DPC inhibited the PKA-ICa in mouse atrial myocytes which lacked ICl. Neither 4,4'dinitrostilbene-2,2'-disulfonic acid (100 microM) nor indanyloxyacetic acid 94 (50 microM) caused any change in either of the guinea pig ventricular currents. CONCLUSIONS: Drugs such as DPC and anthracene-9-carboxylate which block the cardiac CFTR Cl- channel also inhibit the regulation of the L-type ICa. During beta-adrenergic stimulation, changes produced by these drugs on the cardiac action potential duration will be attributable to inhibition of both the Cl- and Ca2+ currents. Analogues of clofibric acid may serve as selective blockers of the CFTR Cl- channel that can be used to determine the physiological function of ICl in cardiac excitation.  相似文献   

9.
The effects of tilisolol, a nonselective beta-adrenoceptor blocker, on transmembrane ionic currents were studied in single guinea pig ventricular myocytes by using the whole-cell voltage clamp technique. In the absence of beta-adrenergic stimulation, 10 microM tilisolol, a concentration higher than that used in the clinical therapeutic regimen, did not affect the L-type Ca2+ current (ICa), the inwardly rectifying K+ current (IK1), or the delayed rectifying K+ current (IK). In addition, it did not induce currents through the adenosine triphosphate (ATP)-sensitive K+ channels. However, under the nonselective beta-adrenergic stimulation with 1 microM isoproterenol, 1 microM tilisolol almost completely reversed the agonist-induced increase of IK. The increase of ICa by isoproterenol was blocked only by approximately 30% with tilisolol. We concluded that, at therapeutic concentrations (0.01-0.15 microM), tilisolol is a pure beta-adrenoceptor antagonist that has no direct effects on the transmembrane ionic currents of mammalian ventricular myocytes, such as ICa, IK1, or IK. Comparison of the dose-dependent effects of tilisolol on ICa and IK suggested that tilisolol may selectively inhibit catecholamine-induced increase of IK at the therapeutic concentrations. The virtually selective inhibition of IK, leaving ICa intact, may be favorable to prevent the catecholamine-induced arrhythmia without inhibiting contraction.  相似文献   

10.
OBJECTIVE: To define the electrophysiologic mechanism(s) by which MCI-154, a putative Ca2+ sensitizer, produces a positive inotropic response without a positive chronotropic response, we examined effects of MCI-154 on the action potential of atrial preparations and the membrane currents of atrial myocytes. METHODS: The action potentias were recorded from left atrial and sinoatrial node preparations of guinea pigs by the use of standard microelectrode techniques. The whole-cell membrane currents were recorded from enzymatically-dissociated guinea pig atrial myocytes using conventional patch clamp techniques. RESULTS: In isolated left atria, MCI-154 increased the developed tension in a concentration-dependent manner. MCI-154 at concentrations of 10 and 100 microM increased the action potential duration (APD) in left atria stimulated at 0.5 Hz. In sinoatrial node preparations MCI-154 at a concentration of 100 microM produced a negative chronotropic response and prolonged APD. In single right atrial myocytes, MCI-154 at concentrations of 10 and 100 microM failed to increase the inward L-type Ca2+ current, but decreased the delayed rectifier K+ current (IK) in a concentration-dependent manner. MCI-154 decreased IK elicited by short depolarizing pulses more markedly than that induced by long depolarizing pulses. In addition, MCI-154 produced only a little inhibition of IK in the presence of E-4031, a specific blocker of rapidly activating component of IK (IKr). CONCLUSIONS: MCI-154 preferentially blocks IKr and the inhibitory action on IKr may be partly involved in the negative chronotropic and positive inotropic responses in atrial preparations.  相似文献   

11.
beta-Dendrotoxin (beta-DTX), a polypeptide component of Eastern Green Mamba snake venom, inhibits a slow voltage-activated 86Rb efflux from synaptosomes, suggesting that beta-DTX inhibits K+ channels. The effects of beta-DTX on the K+ currents in primary cultured and subcultured (passages 8-12) rat tail artery vascular smooth muscle cells (VSMCs) were studied using the whole-cell patch-clamp technique. A delayed rectifier K+ current was observed in both types of cells. The current, which was relatively insensitive to tetraethylammonium, was activated at -40 to -30 mV and showed almost no inactivation. beta-DTX (1-1000 nM) decreased the outward K+ current. The effect was concentration dependent and reversible by washout but did not depend on the frequency of stimulation (use dependence) or the membrane potential. beta-DTX was more effective in primary cultured cells than in subcultured cells. K+ channels in primary cultured cells were maximally (45%) inhibited by 1 microM beta-DTX compared with 35% inhibition in subcultured cells. The concentration producing half-maximal inhibition was 5.1 x 10(-8) M for primary cells and 7.1 x 10(-8) M for subcultured cells. The delayed rectifier current was not affected by alpha-DTX, a blocker of the fast-inactivating outward K+ current (IA). These results clearly demonstrate that beta-DTX is a novel antagonist of the delayed rectifier K+ current in primary and subcultured rat tail artery VSMCs.  相似文献   

12.
We have demonstrated recently that phenylazonaphthol (PAN) allergy-induced hyperpigmentation in brownish guinea pig skin is associated with the concomitant appearance of a melanogenic soluble factor(s) that activates the intracellular signal transduction system, including phosphatidylinositol turnover subsequent to ligand-receptor binding in cultured guinea pig melanocytes. In this study we have purified and characterized the PAN-induced melanogenic stimulating factor (PIMSF) that occurs in allergy-associated hyperpigmented skin. By successive column chromatography on TSK 2000SW, Mono Q, and octadecyl-NPR, the PIMSF was purified to homogeneity with a single band of apparent molecular mass of 7.9 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The specific bioactivity of PIMSF increased by 5,195-fold over the original skin homogenate. In cultured guinea pig melanocytes, this purified PIMSF had the potential of activating an intracellular signal transduction system such as inositol 1,4,5-trisphosphate formation and intracellular calcium levels through a pertussis toxin-sensitive G protein-coupled receptor. PIMSF consistently caused a rapid translocation of cytosolic protein kinase C (PKC) to membrane-bound PKC within 5 min of treatment with a return to the basal level after 120 min. The stimulating effects of PIMSF on proliferation and melanization of cultured guinea pig melanocytes were abolished completely by a PKC down-regulating agent (phorbol 12,13-dibutyrate). PIMSF was similar in molecular mass to rat growth-related oncogene alpha (GRO-alpha; molecular mass of 7.9 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and had immunocross-reactivity with GRO-alpha upon Western immune blotting analysis. Further, the stimulatory effect of purified PIMSF on DNA synthesis of cultured guinea pig melanocytes was suppressed markedly by the addition of anti-rat GRO-alpha antibody, implying that the PIMSF is apparently identical to GRO-alpha. These findings suggest that PAN allergy provides a new mechanism of hyperpigmentation in which biological factors such as the GRO-alpha superfamily generated within allergy-induced skin stimulate melanocytes through activation of the PKC-related signal transduction pathway.  相似文献   

13.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at -80, -40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately -61 and -22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30-35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute approximately 20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels.  相似文献   

14.
Loss of function mutations in kidney Kir1.1 (renal outer medullary potassium channel, KCNJ1) inwardly rectifying potassium channels can be found in patients suffering from hyperprostaglandin E syndrome (HPS), the antenatal form of Bartter syndrome. A novel mutation found in a sporadic case substitutes an asparagine by a positively charged lysine residue at amino acid position 124 in the extracellular M1-H5 linker region. When heterologously expressed in Xenopus oocytes and mammalian cells, current amplitudes from mutant Kir1.1a[N124K] channels were reduced by a factor of approximately 12 as compared with wild type. A lysine at the equivalent position is present in only one of the known Kir subunits, the newly identified Kir1.3, which is also poorly expressed in the recombinant system. When the lysine residue in guinea pig Kir1.3 (gpKir1.3) isolated from a genomic library was changed to an asparagine (reverse HPS mutation), mutant channels yielded macroscopic currents with amplitudes increased 6-fold. From single channel analysis it became apparent that the decrease in mutant Kir1.1 channels and the increase in mutant gpKir1.3 macroscopic currents were mainly due to the number of expressed functional channels. Coexpression experiments revealed a dominant-negative effect of Kir1.1a[N124K] and gpKir1.3 on macroscopic current amplitudes when coexpressed with wild type Kir1.1a and gpKir[K110N], respectively. Thus we postulate that in Kir1.3 channels the extracellular positively charged lysine is of crucial functional importance. The HPS phenotype in man can be explained by the lower expression of functional channels by the Kir1. 1a[N124K] mutant.  相似文献   

15.
In single guinea pig ventricular cells, genistein, a potent inhibitor of protein tyrosine kinase (PTK), was found to suppress the delayed-rectifier K (IK) current. The present study was carried out to examine the underlying mechanism. Ventricular myocytes were voltage-clamped in the conventional whole-cell mode (36 degrees C). The amplitudes of tail and steady-state (2-s pulse) currents were measured as IK. Genistein (10-100 microM) reversibly inhibited both basal and intrapipette cAMP (1 mM)-enhanced IK currents in a concentration-dependent manner with a half-maximum inhibitory concentration (IC50) at approximately 30 microM. In contrast, lavendustin A (10 microM; n = 5) and tyrphostin 51 (100 microM; n = 5) had no effect on the currents. The inhibitory action of genistein was also seen after IK currents were activated by forskolin (500 nM) plus intrapipette orthovanadate (500 microM). The intrapipette cAMP-enhanced IK was also reduced to a lesser degree by daidzein, an inactive analogue of genistein. Envelope tail and short pulse protocols revealed that genistein inhibits the slow component of IK (IKs). Thus, the inhibitory action of genistein is not mediated via an inhibition of PTK but may be due to the block of IKs channels.  相似文献   

16.
The effects of arachidonic acid on ACh-gated channel currents were examined using Torpedo nicotinic ACh receptors expressed in Xenopus oocytes. Arachidonic acid decreased ACh-evoked currents during treatment, to a greater extent in Ca(2+)-free extracellular solution. The currents were enhanced for more than 30 min after washing, reaching 150 and 170% in Ca(2+)-containing and -free extracellular solutions, respectively. The current enhancement was inhibited by the selective protein kinase C (PKC) inhibitor, GF109203X, whereas the current depression was not affected. Furthermore, arachidonic acid-evoked current depression was blocked in mutant ACh receptors with PKC phosphorylation site deletions on the alpha and delta subunits, but the long-lasting potentiation effect remained. These results indicate that arachidonic acid may decrease ACh receptor currents by a direct binding to PKC phosphorylation sites of the ACh receptors and may potentiate the currents via a novel pathway related to arachidonic acid-regulated PKC activation, but not via PKC phosphorylation of the ACh receptor itself.  相似文献   

17.
The occurrence of early after depolarization (EAD) in single mouse ventricular myocytes was observed and its ionic mechanisms were studied using the patch clamp technique. Under treatment with perfusion of Tyrode's solution containing 3 mM KCl and 3 mM CsCl, 3/6 cases exhibited EAD, while with 3 mM KCl or 3 mM CsCl alone, EAD was not induced. The background steady-state current-voltage (I-V) curves of the myocytes showed no negative slope, i.e., the slope in the range of 50 mV positive to the reversal potential was virtually flat and stayed at a low current level. Under perfusion of 3 mM KCl and 3 mM CsCl, the outward current in the above region decreased nearly to 0: in the myocytes which exhibited EAD, a net inward current (crossover) was displayed in the same region, which was abolished by 10 microM TTX and 10 microM nifedipine. The results of whole-cell inward rectifier current I-V curves were similar to the above background steady-state I-V curves. In mouse ventricular myocytes, transient outward current was very strong with a peak current density of 63 +/- 19 pA/pF, whereas low K+ and Cs+ had no significant effect. 11/30 cases showed obvious delayed rectifier current, but the tail current recorded by envelope method was relatively weak (1.19 +/- 0.35 pA/pF) and insensitive to CsCl or changing of the KCl concentration. The results suggest that under treatment with low K+ and Cs+, the inhibition of inward rectifier current is the basis of the formation of second plateau, while Na and Ca currents contribute to the generation of triggered bursts.  相似文献   

18.
INTRODUCTION: Reverse rate-dependence, a lessening in Class III antiarrhythmic agent action potential duration (APD) prolongation as heart rate is increased, has been proposed to be related to an incomplete deactivation of the slow component (IKs) of the delayed rectifier K+ current (IK). The rate-dependent properties of block of IK by azimilide were compared to E-4031, which selectively blocks the rapid component (IKr) of IK, in guinea pig ventricular muscle. METHODS AND RESULTS: Azimilide prolonged APD in isolated papillary muscles in a concentration-dependent manner and to a greater degree than E-4031. Both agents prolonged APD less at fast than slow rates, consistent with a similar reverse rate-dependent effect. Isolation of azimilide block of IKs by subtraction of APD during E-4031 plus azimilide from E-4031 alone revealed rate-independent prolongation of APD. In voltage clamp experiments on single ventricular myocytes, activation of IKs was similar following 30 seconds of conditioning pulses of physiological duration (125 to 200 msec) with either a fast (cycle length 250 msec) or slow (cycle length 2000 msec) rate. The block of IKs by azimilide 3 microM was greater after a fast conditioning pulse train. CONCLUSIONS: Selective block of IKs prolongs APD in a rate-independent manner. In voltage clamped myocytes, no evidence of a rate-dependent accumulation of IKs was observed. These findings support a mechanism of reverse rate-dependent APD prolongation by Class III antiarrhythmic agents that block IKr independent of IKs.  相似文献   

19.
The channel underlying the slow component of the voltage-dependent delayed outward rectifier K+ current, I(Ks), in heart is composed of the minK and KvLQT1 proteins. Expression of the minK protein in Xenopus oocytes results in I(Ks)-like currents, I(sK), due to coassembly with the endogenous XKvLQT1. The kinetics and voltage-dependent characteristics of I(sK) suggest a distinct mechanism for voltage-dependent gating. Currents recorded at 40 mV from holding potentials between -60 and -120 mV showed an unusual "cross-over," with the currents obtained from more depolarized holding potentials activating more slowly and deviating from the Cole-Moore prediction. Analysis of the current traces revealed two components with fast and slow kinetics that were not affected by the holding potential. Rather, the relative contribution of the fast component decreased with depolarized holding potentials. Deactivation and reactivation, after a short period of repolarization (100 ms), was markedly faster than the fast component of activation. These gating properties suggest a physiological mechanism by which cardiac I(Ks) may suppress premature action potentials.  相似文献   

20.
The development of excitable cells is characterized by highly organized patterns of expression of ion channels. During the terminal differentiation of Xenopus muscle somites, potassium currents are expressed first just after Stage 15 (early-mid neurula), following a long period during which no voltage-dependent currents can be detected in any cell in the dorsal embryo. We have investigated whether early expression of a foreign delayed rectifier potassium channel may affect this endogenous pattern of electrical development. We injected the purified cRNA of the mammalian brain Shaker-like potassium channel, Kv1.1, into fertilized Xenopus eggs. The resulting currents were analyzed in blastomeres during a 12-hr period prior to Stage 15 and in differentiating muscle cells after Stage 15. In injected embryos, a high fraction of blastomeres expressed a delayed rectifier-type current. The Kv1.1 current could be distinguished from the endogenous muscle delayed potassium current (IK,X) by its very different voltage dependence. Separation of currents based on this difference indicated that, in injected embryos, IK,X appeared much earlier in development than in control embryos. Furthermore, even in cells which expressed solely Kv1.1-type current, the sensitivity of the current to dendrotoxin declined dramatically during development, approaching that of IK,X. These data suggest an interaction between Kv1.1 and endogenous channel subunits, and/or modification of the Kv1.1 protein by the embryonic cells in ways not seen in Xenopus oocytes or mammalian cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号