首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise orchestration of synaptic differentiation is critical for efficient information exchange in the nervous system. The nerve-muscle synapse forms in response to agrin, which is secreted from the motor nerve terminal and induces the clustering of acetylcholine receptors (AChRs) and other elements of the postsynaptic apparatus on the subjacent muscle cell surface. In view of the highly restricted spatial localization and the plasticity of neuromuscular junctions, it seems likely that synapse formation and maintenance are regulated by additional, as-yet-unidentified factors. Here, we tested whether neurotrophins modulate the agrin-induced differentiation of postsynaptic specializations. We show that both brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4) inhibit agrin-induced AChR clustering on cultured myotubes. Nerve growth factor and NT-3 are without effect. Muscle cells express full-length TrkB, the cognate receptor for BDNF and NT-4. Direct activation of this receptor by anti-TrkB antibodies mimicked the BDNF/NT-4 inhibition of agrin-induced AChR clustering. This BDNF/NT-4 inhibition is likely to be an intrinsic mechanism for regulating AChR clustering, because neutralization of endogenous TrkB ligands resulted in elevated levels of AChR clustering even in the absence of added agrin. Finally, high concentrations of agrin can occlude the BDNF/NT-4 inhibition of AChR clustering. These results indicate that an interplay between agrin and neurotrophins can regulate the formation of postsynaptic specializations. They also suggest a mechanism for the suppression of postsynaptic specializations at nonjunctional regions.  相似文献   

2.
Muscle cells depend on motoneurons for the initiation of postsynaptic differentiation during early development of the neuromuscular junction. Motoneurons secrete specific isoforms of the extracellular matrix protein agrin which trigger the aggregation of acetylcholine receptors (AChRs) on the muscle surface. Both motoneuron- and agrin-induced AChR aggregation are inhibited by heparin. Here we show that this inhibition is due to two separate and distinguishable mechanisms. At high concentrations, heparin directly binds to agrin isoforms which contain the peptide KSRK, resulting in a virtually complete inhibition of AChR clustering. Heparin and other polyanions do not bind to agrin splicing variants without KSRK insert. Isoforms containing or lacking the KSRK insert have a high potency to induce AChR aggregation in the presence of an activating eight-amino-acid insert. This activity is inhibited by low concentrations of heparin even in the absence of any binding of heparin to agrin. Therefore, this second type of inhibition is due to the interaction of heparin with a downstream component of the agrin-induced clustering pathway. Binding of heparin to this yet unidentified component substantially decreases, but does not completely abolish AChR aggregation. The inhibition is particularly strong on myotubes which have not completely matured in culture.  相似文献   

3.
Agrin is an extracellular matrix protein that directs neuromuscular junction formation. Early signal transduction events in agrin-mediated postsynaptic differentiation include activation of a receptor tyrosine kinase and phosphorylation of acetylcholine receptors (AChRs), but later steps in this pathway are unknown. Here, we have investigated the role of intracellular calcium in agrin-induced AChR clustering on cultured myotubes. Clamping intracellular calcium levels by loading with the fast chelator BAPTA inhibited agrin-induced AChR aggregation. In addition, preexisting AChR aggregates dispersed under these conditions, indicating that the maintenance of AChR clusters is similarly dependent on intracellular calcium fluxes. The decrease in AChR clusters in BAPTA-loaded cells was dose-dependent and reversible, and no change in the number or mobility of AChRs was observed. Clamping intracellular calcium did not block agrin-induced tyrosine phosphorylation of the AChR beta-subunit, indicating that intracellular calcium fluxes are likely to act downstream from or parallel to AChR phosphorylation. Finally, the targets of the intracellular calcium are likely to be close to the calcium source, since agrin-induced AChR clustering was unaffected in cells loaded with EGTA, a slower-binding calcium chelator. These findings distinguish a novel step in the signal transduction mechanism of agrin and raise the possibility that the pathways mediating agrin- and activity-driven changes in synaptic architecture could intersect at the level of intracellular calcium fluxes.  相似文献   

4.
5.
Agrin, a proteoglycan secreted by motoneurons, is a critical organizer of synaptic differentiation at skeletal neuromuscular junctions. Agrin is widely expressed in the nervous system so other functions seem likely, but none have been demonstrated. To test roles for agrin in interneuronal synapse formation, we studied hippocampi from mutant mice that completely lack the z+ splice form of agrin essential for neuromuscular differentiation and also exhibit severely ( approximately 90%) reduced levels of all agrin isoforms (M. Gautam et al., 1996, Cell 85, 525-535). The brains of neonatal homozygous agrin mutants were often smaller than those of heterozygous and wild-type littermates, but were morphologically and histologically indistinguishable. In particular, antibodies to pre- and postsynaptic components of glutamatergic synapses were similarly coaggregated at synaptic sites in both mutants and controls. Because mutants die at birth due to neuromuscular defects, we cultured neurons to assess later stages of synaptic maturation. In primary cultures, the agrin-deficient neurons formed MAP2-positive dendrites and tau-1-positive axons. Synaptic vesicle proteins, AMPA- and NMDA-type glutamate receptors, GABAA receptors, and the putative synapse-organizing proteins PSD-95, GKAP, and gephyrin formed numerous clusters at synaptic sites. Quantitatively, the number of SV2-labeled contacts per neuron at day 5 and the number of PSD-95 clusters per dendrite length at day 18 in culture showed no significant differences between genotypes. Furthermore, exogenous z+ agrin was unable to induce ectopic accumulation of components of central glutamatergic or GABAergic synapses as it does for neuromuscular cholinergic synapses. These results indicate that the z+ forms of agrin are dispensable for glutamatergic and GABAergic synaptic differentiation in the central nervous system.  相似文献   

6.
The selective concentration of neurotransmitter receptors at the postsynaptic membrane is an essential aspect of synaptic differentiation and function. Agrin is an extracellular matrix protein that is likely to direct the accumulation of acetylcholine receptors and several other postsynaptic elements at developing and regenerating neuromuscular junctions. How agrin interacts with the membrane to bring about these changes is unknown. We now report the identification and purification of a protein complex from Torpedo electric organ postsynaptic membranes that is likely to serve as an agrin receptor. The native receptor is a heteromeric complex of two membrane glycoproteins of 190 kDa and 50 kDa. The 190 kDa subunit is sufficient to bind ligand. Peptide sequence analysis revealed that the 190 kDa and 50 kDa subunits are related to the dystrophin-associated glycoproteins alpha- and beta-dystroglycan, respectively. No other candidate agrin receptors were detected. The identification of the agrin receptor opens new avenues toward a mechanistic understanding of synapse differentiation.  相似文献   

7.
During synaptogenesis at the neuromuscular junction, a neurally released factor, agrin, causes the clustering of acetylcholine receptors (AChRs) in the muscle membrane beneath the nerve terminal. Agrin acts through a specific receptor which is thought to have a receptor tyrosine kinase, MuSK, as one of its components. In agrin-treated muscle cells, both MuSK and the AChR become tyrosine phosphorylated. To determine how the activation of MuSK leads to AChR clustering, we have investigated their interaction in cultured C2 myotubes. Immunoprecipitation experiments showed that MuSK is associated with the AChR and that this association is increased by agrin treatment. Agrin also caused a transient activation of the AChR-associated MuSK, as demonstrated by MuSK phosphorylation. In agrin-treated myotubes, MuSK phosphorylation increased with the same time course as phosphorylation of the beta subunit of the AChR, but declined more quickly. Although both herbimycin and staurosporine blocked agrin-induced AChR phosphorylation, only herbimycin inhibited the phosphorylation of MuSK. These results suggest that although agrin increases the amount of activated MuSK that is associated with the AChR, MuSK is not directly responsible for AChR phosphorylation but acts through other kinases.  相似文献   

8.
Synaptic differentiation is triggered by signals from the ingrowing axon and is shaped by information exchange between the presynaptic and postsynaptic cells. The central role of agrin in this process, and the identity of the signaling component of its receptor, have now been established.  相似文献   

9.
The synaptic basal membrane protein agrin initiates the aggregation of acetylcholine receptors at the postsynaptic membrane of the developing neuromuscular junction. Recently, alpha-dystroglycan was found to be a major agrin-binding protein on the muscle cell surface and was therefore considered a candidate agrin receptor. Employing different truncation fragments of agrin, we determined regions of the protein involved in binding to alpha-dystroglycan and to heparin, an inhibitor of alpha-dystroglycan binding. Deletion of a 15-kDa fragment from the C terminus of agrin had no effect on its binding to alpha-dystroglycan from rabbit muscle membranes, even though this deletion completely abolishes its acetylcholine receptor aggregating activity. Conversely, deletion of a central region does not affect agrin's clustering activity, but reduced its affinity for alpha-dystroglycan. Combination of these two deletions resulted in a fragment of approximately 35 kDa that weakly bound to alpha-dystroglycan, but displayed no clustering activity. All of these fragments bound to heparin with high affinity. Thus, alpha-dystroglycan does not show the binding specificity expected for an agrin receptor. Our data suggest the existence of an additional component on the muscle cell surface that generates the observed ligand specificity.  相似文献   

10.
Presynaptic and postsynaptic membranes directly oppose each other at chemical synapses, minimizing the delay in transmitting information across the synaptic cleft. Extrasynaptic neuronal surfaces, in contrast, are almost entirely covered by processes from glial cells. The exclusion of glial cells from the synaptic cleft, and the long-term stability of synapses, presumably result in large part from the tight adhesion between presynaptic and postsynaptic elements. Here we show that there is another requirement for synaptic maintenance: glial cells of the skeletal neuromuscular synapse, Schwann cells, are actively inhibited from entering the synaptic cleft between the motor nerve terminal and the muscle fibre. One inhibitory component is laminin 11, a heterotrimeric glycoprotein that is concentrated in the synaptic cleft. Regulation of an inhibitory interaction between glial cells and synaptic cleft components may contribute to synaptic rearrangements, and loss of this inhibition may underlie the loss of synapses that results from injury to the postsynaptic cell.  相似文献   

11.
In the visual pathway of frogs it is possible to apply low levels of NMDA chronically to the optic tectum and study the mechanisms underlying the stabilization of synapses developing within the CNS. Earlier studies (Cline and Constantine-Paton, 1990) found that chronic NMDA treatment of tecta innervated by two retinas results in a reduction of branching within the terminal arbors of retinal ganglion cells (RGCs). We now report that this same chronic NMDA treatment produces fine-structural changes in synaptic morphology as well as local synaptic rearrangements within the retinotectal neuropil. Chronic NMDA treatment of doubly innervated tecta was associated with a thickening or darkening of both pre- and postsynaptic densities. These changes in synapse morphology were restricted to the superficial neuropil of tecta in regions where reductions in branches of RGC axonal arbors were observed at the light microscopic level. The fine-structural effects were absent from similarly treated tecta innervated by only one eye, where RGC axonal arbor pruning was not observed. Stereological analyses indicated that the incidence of two or more presynaptic profiles converging on the same postsynaptic process was significantly increased in the NMDA-treated, doubly innervated tecta. This observed increase in synaptic clustering was not associated with a larger synaptic active zone, or with an increase in the number of synapses per unit volume. These data are discussed in the context of the hypothesis that chronic NMDA treatment raises the threshold for synapse stabilization in tectal neurons, causing the selective loss of poorly correlated synapses of both retinal and non-retinal origin from tectal neuropil that is innervated by two retinas: increased pre- and postsynaptic thickening could reflect greater efficiency in the remaining synaptic contacts and their closer spatial proximity on the same postsynaptic process is consistent with greater cooperativity and less competition.  相似文献   

12.
During development of the neuromuscular junction, neuronal splice variants of agrin initiate the aggregation of acetylcholine receptors on the myotube surface. The muscle-specific kinase is thought to be part of an agrin receptor complex, although the recombinant protein does not bind agrin with high affinity. To specify its function, we induced phosphorylation and activation of this kinase in the absence of agrin by incubating myotubes with antibodies directed against its N-terminal sequence. Antibody-induced dimerization of the muscle-specific kinase but not treatment with Fab fragments was sufficient to trigger two key events of early postsynaptic development: acetylcholine receptors accumulated into aggregates, and their beta-subunits became phosphorylated on tyrosine residues. Heparin partially inhibited receptor aggregation induced by both agrin and anti-muscle-specific kinase antibodies. In contrast, it did not affect kinase or acetylcholine receptor phosphorylation. These data indicate that agrin induces postsynaptic differentiation by dimerizing the muscle-specific kinase. They also suggest that activation of the kinase domain can account for only part of agrin's effects. Dimerization of this molecule appears to activate an additional signal, most likely by organizing a scaffold for other postsynaptic proteins.  相似文献   

13.
During the development of the neuromuscular junction (NMJ), motoneurons grow to the muscle cell and the nerve-muscle contact triggers the development of both presynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of synaptic vesicles (SVs), and postsynaptic specialization, consisting of clusters of acetylcholine receptors (AChRs). Previous studies have shown that the activation of tyrosine kinases and the local assembly of an actin-based cytoskeletal specialization are involved in the development of both types of specializations. To understand the link between tyrosine phosphorylation and the assembly of the cytoskeleton, we examined the localization of cortactin in relationship to synaptic development. Cortactin is a 80/85 kD F-actin binding protein and is a substrate for tyrosine kinases. It contains a proline-rich motif and an SH3 domain and is localized at sites of active F-actin assembly. Using a monoclonal antibody against cortactin, its localization at developing NMJs in culture was observed. To understand the spatial and temporal relationship between cortactin and developing synaptic structures, cultured muscle cells and spinal neurons from Xenopus embryos were treated with beads coated with heparin-binding growth-associated molecule to induce the formation of AChR clusters and SV clusters and the localization of cortactin was followed by immunofluorescence. In untreated muscle cells, cortactin is often co-localized with spontaneously formed AChR clusters. After cells were treated with beads, cortactin became localized at bead-induced AChR clusters at their earliest appearance (1 h after the addition of beads). This association was most reliably detected at the early stage of the clustering process. On the presynaptic side, cortactin localization could be detected as early as 10 min after the bead-neurite contact was established. Cortactin-enriched contacts later showed concentration of F-actin (at 1 h) and clusters of SVs (at 24 h). These data suggest that cortactin mediates the local assembly of the cytoskeletal specialization triggered by the synaptogenic signal on both nerve and muscle.  相似文献   

14.
We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the presynaptic cell at synapses between embryonic hippocampal neurons in culture, the dominant negative TrkB.T1 inhibited two forms of synaptic potentiation induced by the neurotrophin brain-derived neurotrophic factor (BDNF): (i) greater evoked synaptic transmission and (ii) higher frequency of spontaneous miniature synaptic currents. These inhibition effects are not seen if the transgene is expressed only in the postsynaptic cell. We conclude that BDNF-TrkB signal transduction in the presynaptic terminal leads to both types of potentiation and is therefore the primary cause of synaptic enhancement by BDNF in these neurons.  相似文献   

15.
The distribution and mobility of concanavalin A (Con A) and Ricinus communis agglutinin (RCA) receptors (binding sites) on the external surfaces of Purkinje, hippocampal pyramidal, and granule cells and their attached boutons were studied using ferritin-lectin conjugates. Dendritic fields of these cells were isolated by microdissection and gently homogenized. Cell fragments and pre- and postsynaptic membranes were labeled with the ferritin-lectin conjugates at a variety of temperatures, and the distribution of lectin receptors was determined by electron microscopy. Both classes of these lectin receptors were concentrated at nearly all open and partially open postsynaptic junctional membranes of asymmetric-type synapses on all three neuron types. Con A receptors were most concentrated at the junctional membrane region, indicating that the mature neuron has a specialized nonrandom organization of carbohydrates on its outer surface. Lectin receptors located on postsynaptic junctional membranes appeared to be restricted in their mobility compared to similar classes of receptors on extrajunctional membrane regions. Labeling with ferritin-RCA and -Con A at 37 degrees C produced clustering of lectin receptors on nonjunctional surfaces; however, Con A and RCA receptors retained their nonrandom topographic distribution on the postsynaptic junctional surface. The restricted mobility of lectin receptors was an inherent property of the postsynaptic membrane since the presynaptic membrane was absent. It is proposed that structures in the postsynaptic density may be transmembrane-linked to postsynaptic receptors and thereby determine topographic distribution and limit diffusion of specialized synaptic molecules. Speicalized receptor displays may play an important role in the formation and maintenance of specific synaptic contacts.  相似文献   

16.
The accumulation of nicotinic acetylcholine receptors (AChRs) at neuromuscular synapses is triggered by agrin, a protein that is synthesized by both nerve and muscle. Nerve-derived agrin, which contains an amino acid insert at a conserved splice site in the carboxy-terminal part of the protein, induces AChR aggregation and causes tyrosine phosphorylation of the AChR beta subunit. In contrast, agrin isoforms synthesized by muscle cells lack such an insert and have no effect on AChR distribution. In order to identify possible functional roles of muscle-derived agrin we have analyzed further the effect of various fragments of recombinant agrin on AChR phosphorylation. A carboxy-terminal fragment of muscle agrin, c95A0B0, reduced AChR gamma and delta subunit phosphorylation when added to C2C12 myotubes in culture. Although c95A0B0 had no effect on AChR beta subunit phosphorylation when added alone, it inhibited AChR beta subunit phosphorylation and AChR aggregation by the nerve-specific agrin isoform c95A4B8. We conclude that muscle-derived agrin can influence, both directly and indirectly, AChR phosphorylation. Such changes may play a role in the formation, maintenance, or function of the neuromuscular junction.  相似文献   

17.
Photoreceptor synaptogenesis in the embryonic and hatchling chick retina was studied with conventional EM techniques and ethanolic phosphotungstic acid (E-PTA). The photoreceptors line up between 11 and 13 embryonic days with their undifferentiated synaptic bases facing the outer plexiform layer (OPL). E-PTA staining at 11 embryonic days does not reveal any para-membranous specializations of the receptors but numerous stained punctae adhaerentes are observed in the OPL. At 13 embryonic days neurites of presumed bipolar and horizontal neurons are aligned parallel to the bases of the receptors and cytoplasmic protrusions of the receptors project between some of these neurites to form dyad appositions. An osmiophilic undercoating, which is not E-PTA positive at this time, is present on the cytoplasmic face of the receptor membrane in these apposition regions. Between 13 and 15 embryonic days the filopodial protrusions of the receptors continue to elongate further and become aligned with neurites in dyad and triad appositions. The osmiophilic undercoating now extends along the entire inner surface of the receptor pedicle protrusions and becomes E-PTA positive. Between 15 and 17 embryonic days focal aggregations of osmiophilic and E-PTA stained material appear along the membranes of the protrusions and there is some E-PTA staining of the postsynaptic densities and intervening cleft material. Between 17 and 21 embryonic days mature ribbon synapses are observed on the surfaces of the conical-shaped, receptor pedicles where the ribbons and their synaptic vesicles are associated with the dense aggregations (arciform densities), seen earlier as isolated focal aggregations, and the receptor undercoating is restricted to non-synaptic regions. E-PTA staining shows that ribbons are positively stained around their borders only and that they are contiguous with the intensely stained arciform densities. The cleft material and postsynaptic densities of some synapses first stain as V-shaped junctions and later as Y-shaped junctions. These observations suggest that ribbon synaptic junction formation begins with an alignment of pre- and postsynaptic membranes and the presence of the receptor presynaptic membrane undercoating, followed by the appearance of the presynaptic arciform densities and some staining of the cleft material and postsynaptic densities. These events are followed by the appearance of synaptic ribbons which are associated with the presynaptic arciform densities and by a further differentiation of the cleft material and postsynaptic densities.  相似文献   

18.
19.
Nerve terminal specializations include mechanisms for maintaining a subpopulation of vesicles in a docked, fusion-ready state. We have investigated the relationship between synaptotagmin and the number of morphologically docked vesicles by an electron microscopic analysis of Drosophila synaptotagmin (syt) mutants. The overall number of synaptic vesicles in a terminal was reduced, although each active zone continued to have a cluster of vesicles in its vicinity. In addition, there was an increase in the number of large vesicles near synapses. Examining the clusters, we found that the pool of synaptic vesicles immediately adjacent to the presynaptic membrane, the pool that includes the docked population, was reduced to 24 +/- 5% (means +/- SEM) of control in the sytnull mutation. To separate contributions of overall vesicle depletion and increased spontaneous release from direct effects of synaptotagmin on morphological docking, we examined syt mutants in an altered genetic background. Recombining syt alleles onto a second chromosome bearing an as yet uncharacterized mutation resulted in the expected decrease in evoked release but suppressed the increase in spontaneous release frequency. Motor nerve terminals in this genotype contained more synaptic vesicles than control, yet the number of vesicles immediately adjacent to the presynaptic membrane near active zones was still reduced (33 +/- 4% of control). Our findings demonstrate that there is a decrease in the number of morphologically docked vesicles seen in syt mutants. The decreases in docking and evoked release are independent of the increase in spontaneous release. These results support the hypothesis that synaptotagmin stabilizes the docked state.  相似文献   

20.
Utrophin is a dystrophin-related cytoskeletal protein expressed in many tissues. It is thought to link F-actin in the internal cytoskeleton to a transmembrane protein complex similar to the dystrophin protein complex (DPC). At the adult neuromuscular junction (NMJ), utrophin is precisely colocalized with acetylcholine receptors (AChRs) and recent studies have suggested a role for utrophin in AChR cluster formation or maintenance during NMJ differentiation. We have disrupted utrophin expression by gene targeting in the mouse. Such mice have no utrophin detectable by Western blotting or immunocytochemistry. Utrophin-deficient mice are healthy and show no signs of weakness. However, their NMJs have reduced numbers of AChRs (alpha-bungarotoxin [alpha-BgTx] binding reduced to approximately 60% normal) and decreased postsynaptic folding, though only minimal electrophysiological changes. Utrophin is thus not essential for AChR clustering at the NMJ but may act as a component of the postsynaptic cytoskeleton, contributing to the development or maintenance of the postsynaptic folds. Defects of utrophin could underlie some forms of congenital myasthenic syndrome in which a reduction of postsynaptic folds is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号