首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
数值模拟链传动中销轴与套筒之间的定载荷和变载荷弹流润滑接触问题,套筒相对于销轴做纯滑动往复运动。定载荷是假定往复运动过程中载荷恒定不变;变载荷是假定链节在啮入和啮出链轮过程中存在的冲击载荷按正弦函数规律变化。比较在定载荷和变载荷加载条件下线接触往复运动工况的弹性润滑油膜变化情况,分析在动载荷加载条件下不同行程长度对弹性流体动力润滑特性的影响。研究发现,动载荷对油膜的压力、膜厚影响较大:随着动载荷的增加,油膜中压力急剧增大,膜厚减小;但加载方式对摩擦因数的影响不大;在相同的加载方式下,随着行程长度的增加,油膜压力减小,中心膜厚和最小膜厚显著增加。  相似文献   

2.
This study presents experimental and numerical investigations on the effects of transverse limited micro-grooves on the behavior of film thickness and friction in EHL point contacts. The tribological performance has been compared for smooth and textured surfaces in sliding and reciprocating motion and under starvation. The measurements were conducted by using a ball-on-disk tribometer equipped with a high speed camera and torque sensor. The results show that the transverse shallow micro-grooves with a length less than the diameter of the Hertzian contact are efficiently able to enhance the film thickness under different operating conditions. The beneficial effect under starved lubrication requires a mechanism for filling the depleted micro-grooves entering the contact with fresh lubricant. This mechanism can be attributed to the capillary effect in the inlet zone under starvation. The numerical simulation of the transient behavior of transverse limited micro-grooves shows agreement with experimental results. On the other hand, introducing micro-grooves as closed texture cells on one of rubbing surfaces results in a friction reduction in the reciprocating motion. The reduction of friction is substantially attributed to the film thickness enhancement.  相似文献   

3.
In the paper, the previously developed asymptotic approach to solution of the steady isothermal problem of elastohydrodynamic lubrication (EHL) for heavily loaded point contacts is applied to a lubricated point contact with rolling and spinning. It is shown that the whole contact region can be subdivided into three subregions. The central region can be subdivided into the Hertzian region and two adjacent boundary layers — the inlet and exit zones. The main results of the paper are threefold: (i) it is shown that in the central parts of the inlet and exit zones, the mechanisms and the equations controlling the behaviour of the lubrication contact parameters in heavily loaded point and line EHL contacts are identical, (ii) asymptotically precise formulas for the central and exit lubrication film thickness for pre‐critical and over‐critical starved and fully flooded lubrication regimes are analytically derived, and (iii) the inlet and exit zone asymptotically valid equations are uniform across all steady heavily loaded line and point EHL contacts for lubricants with the same rheology. These asymptotically valid equations were analysed and numerically solved in previously published work based on the stable methods utilising the specific regularisation approach developed for lubricated line contacts. Cases of pre‐critical and over‐critical lubrication regimes are considered. The formulas for the lubrication film thickness for pre‐critical and over‐critical starved and fully flooded lubrication regimes allow for simple analysis of the film thickness as a function of spinning angular speed, angle of the entrained lubricant and other pertinent contact characteristics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Lubricant starvation of the contact can occur in high-speed oil or grease lubricated bearings resulting in reduced elastohydrodynamic (EHL) film thickness (Lubricat. Sci. 11 (1999) 227). To achieve optimum bearing performance and component life, it is obviously desirable to be able to predict when starvation will occur and the resulting level of surface protection. For both oils and greases, the transition between fully flooded and starved behaviour is determined by lubricant loss and replenishment of the track (ASME Trans. J. Tribol. 120 (1998) 126; Cann PME, Chevalier F, Lubrecht AA. Track depletion and replenishment in a grease lubricated point contact: a quantitative analysis. Proceedings of the 23rd Leeds–Lyon Symposium on Tribology. 1996. p. 405–14). The current paper develops a criterion for the fully flooded and starved transition of an oil-lubricated contact based on four primary factors controlling lubrication level; these are volume of oil, contact dimensions, oil viscosity and speed. Experiments have been carried out using an optical EHL device to investigate the effect of each of these parameters on starvation. The results show how the boundary between the fully flooded and the starved regime and the film thickness in the starved regime depend on these parameters. A single dimensionless parameter (SD), based on replenishment local to the contact, has been established between the operating parameters and the transition from the fully flooded to starved regime.In this paper, the starvation criterion has been developed for an oil-lubricated contact with a fixed volume of oil present. The next stage is to extend the analysis to grease and the prediction of lubrication failure in bearings.  相似文献   

5.
P. M. Cann 《摩擦学汇刊》2013,56(4):867-873
Many grease lubricated roller bearings operate in the starved elastohydrodynamic (EHL) regime where there is a limited supply of lubricant to the contact (1). Under these conditions the film thickness drops to a fraction of the fully flooded value (2) and, thus, it is difficult to predict lubrication performance, or bearing life, from conventional EHL models. In this regime film thickness depends on the ability of the grease to replenish the track rather than the usual EHL considerations. The conventional view of grease lubrication is that base oil bleeds from the bulk reservoir close to the track, replenishing the inlet and forming a fluid EHL film (3). Resupply, under starved conditions, will thus depend on both operating conditions and grease parameters. The aim of this paper is to evaluate the influence of these parameters on starved lubrication in a rolling contact. Starved film thickness has been measured for a series of greases and the results have been compared to the fully flooded values. These show that the degree of starvation increases with increasing rolling speed, base oil viscosity and thickener content but decreases at higher temperatures. In many cases an increase in absolute film thickness is obtained when moving from high viscosity base oil to a low one, this result is the reverse of normally accepted EHL rules. Taking the fully flooded film thickness as a guide to lubrication performance is therefore not valid as grease film thickness in the starved regime is determined by local replenishment rather than bulk rheological properties.  相似文献   

6.
Full EHL line contact simulations for smooth surfaces are carried out under fully flooded condition to obtain central and minimum film thickness equations pertaining to lubricants with linear piezoviscous response. The present analysis is based upon the assumptions of isothermal condition and Newtonian fluid model. A major drop in the sensitivity of pressure viscosity coefficient (and hence, the material parameter G) is observed. The exponent of the speed parameter U is marginally smaller while that of load parameter is slightly increased. There is close agreement between the simulated and fitted film thickness values.  相似文献   

7.
A laser-induced fluorescence (LIF) technique has been used to measure fluid film thickness in a compliant, sliding contact under low-load/low-pressure conditions. The soft contact between an elastomer hemisphere and a glass disc is lubricated by a liquid containing fluorescent dye. The contact is then illuminated with 532 nm laser light through the glass disc, and viewed with a fluorescence microscope. From the intensity of emitted radiation, film thickness maps of the contact are determined. Previous calibration procedures have used a separate calibration piece and test specimen with possible errors due to differences in reflectivity between the calibration and test specimens. In the work reported in this paper a new calibration process is employed using the actual test sample, thereby avoiding such errors.Results are reported for a sliding contact between PDMS and glass, lubricated with glycerol and water solutions under fully flooded and starved conditions. It was found that, for glycerol, the measured film thickness is somewhat lower than numerical predictions for both lubrication conditions. It is suggested that a combination of thermal effects and the hygroscopic nature of glycerol may cause the lubricant viscosity to drop resulting in thinner films than those predicted for fully flooded contacts. Starvation occurs above a critical entrainment speed and results in considerably thinner films than predicted by fully flooded I-EHL theory. A numerical study has been carried out to determine the effect of the observed starvation on film thickness. Predicted, starved film thickness values agree well with those obtained experimentally.  相似文献   

8.
In this paper, the transient lubrication phenomena induced by isolated circular micro-cavities passing through an EHL point contact are analysed. A 52 100 steel ball was micro-machined using a femtosecond pulse laser, and is tested with an EHL tribometer. The experiments are simulated numerically with a 2D-multigrid solver. Under rolling–sliding conditions, the film thickness distribution is modified, and two opposite effects are observed. Deep micro-cavities induce an oil film decrease. On the contrary, a shallow micro-cavity locally generates a large increase in the film thickness. When the ball surface is the slowest, the propagation velocity of the local oil film reinforcement increases.  相似文献   

9.
This paper proposes the control and dynamic releasing method of a symmetric microgripper with integrated position sensing. The microgripper adopted in this micromanipulation system is constructed by two L-shaped leverage mechanisms and the fingers of the microgripper is machined much thinner than the gripper body. A combined feedforward/feedback position controller is established to improve the motion accuracy of the microgripper in high frequency. The feedforward controller is established based on rate-dependent inverse Prandtl-Ishlinskii (P–I) hysteresis model. The inertial force generated in dynamic based releasing process is analyzed through MATLAB simulation. Open-loop experimental tests have been performed, and the results indicate the first natural frequency of the microgripper is 730 Hz. Then experiments in high frequency based on the developed combined controller are carried out and the results show the tracking error of a superimposed sinusoidal trajectory with the frequency of 100 Hz, 120 Hz and 130 Hz is 6.4%. Finally, the tiny objects releasing experiments are conducted where the combined controller is used to control the motion amplitude and frequency to achieve inertial force controllable to improve operation accuracy. And the results show that the dynamic releasing strategy is effective.  相似文献   

10.
The paper is devoted to the application of the early developed asymptotic approach to solution of the steady isothermal problem of elastohydrodynamic lubrication (EHL) for heavily loaded point contacts with skewed direction of entrained lubricant. It is shown that the whole contact region can be subdivided into three subregions: the central one, which is far away from the other two regions occupied by the ends of the horseshoe‐shaped pressure/gap distribution. The central region, in turn, can be subdivided into the Hertzian region and two adjacent boundary layers — the inlet and exit zones. Moreover, in the central region in the inlet and exit zones, the EHL problem can be reduced to asymptotically valid equations identical to the ones obtained in the inlet and exit zones of heavily loaded line EHL contacts. These equations can be analytically analysed and numerically solved on the basis of the stable methods using a specific regularization approach, which were developed for lubricated line contacts. Cases of pre‐critical and over‐critical lubrication regimes are considered. The by‐product of this asymptotic analysis is an easy analytical derivation of formulas for the lubrication film thickness for pre‐critical and over‐critical starved and fully flooded lubrication regimes. The latter allows for simple analysis of the film thickness as a function of the contact eccentricity and the direction of the entrained lubricant at the inlet in the contact. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Improving knowledge on the film forming behavior of greases is essential to be able to develop efficient greases. This article examines how operating conditions (e.g., temperature, lubrication condition [fully flooded/starved]) and base oil viscosity influence the film forming properties of greases by comparing the behavior of two lithium-based greases and their respective base oils in rolling point contact. It is found that the onset and degree of starvation is controlled by speed (u) × viscosity (ν)/load (W) factor (uν/W) and temperature and that low uν/W values promote entrainment of thickener into contact. Thus, grease with low base oil viscosity shows significant thickener entrainment in the low speed region compared to the one with high base oil viscosity, which leads to the formation of thickener-rich viscous material during extended running with the low base oil viscosity grease. The results suggest that the shape of the film thickness versus speed curve is viscosity and uν/W range dependent. Furthermore, for the test conditions used in this study, grease-lubricated contacts appear to shift from the initial fully flooded condition to starved condition over a prolonged running of 2 h. The results from this study concur with those reported in the literature that fully flooded oil elastohydrodynamic lubrication (EHL) theory or film thickness cannot be directly applied or taken as a guideline in grease-lubricated contacts.  相似文献   

12.
It is well-documented that parameters, such as film thickness and temperature in EHL contacts, can be measured experimentally using a range of techniques include optical interferometry, ultrasonics, capacitance and infrared emission. Considerably less is known, however, about the flow of lubricant through such contacts. Information about lubricant flow would greatly benefit the prediction of friction in machine components. This article describes initial steps to develop fluorescence as a means of observing lubricant flow. An EHL contact was produced between a steel ball and a glass disc and viewed using a fluorescence microscope. The entrained lubricant was dyed using a fluorescent species, so that when illuminated with laser light, a fluorescence intensity map could be viewed. When the contact was fully flooded with dyed lubricant, the fluorescence intensity within the contact correlated well with optical interferometric film thickness measurements under the same conditions. This suggests useful possibilities for mapping film thickness in contacts where conventional optical methods are impractical, such as between rough surfaces and within soft contacts. In order to observe how lubricant flows in an EHL contact, fluorescer-containing lubricant was placed on the out-of-contact track. The boundary between fluorescent and non-fluorescent lubricant was then entrained into the contact and the passage of the boundary through the contact was monitored.  相似文献   

13.
The wear resistance of a low alloy plastic mold steel has been studied under pin-on-flat reciprocating configuration against AISI 52100 steel pins, under variable sliding frequency. The as-received material (HTO; 33 HRC) was heat treated under variable conditions to obtain different microstructures and hardness (HT1, quenched 880 °C, 58 HRC; HT2, tempered 550 °C, 43.4 HRC; HT3, tempered 300 °C, 52 HRC; HT4, annealed, 26 HRC). Under low sliding frequency (1 Hz), no significant differences in the wear resistance of the different materials are observed. Only at 8 Hz, a relationship between hardness and wear resistance is found. The softer annealed material HT4 shows an increasing wear rate under increasing frequency, while the quenched steel HT1 gives the lowest wear at the highest frequency. Wear mechanisms have been studied from SEM and EDS observations. Only HT4 shows a transition from the abrasive and oxidative wear mechanisms found in all cases to an adhesive wear mechanism under the highest frequency.  相似文献   

14.
M.D. Abad  J.C. Sánchez-López 《Wear》2013,297(1-2):943-951
A fully comprehensive study of the tribological behavior of palladium nanoparticles (Pd NPs) capped by tetrabutylammonium chains using a ball-on-disk tribometer under different conditions of applied load, concentration, tribometer motion, linear speed and nature of the counterface is revised. A low concentration of NPs (2 wt%) in tetrabutylammonium acetate was found sufficient to improve the tribological properties due to the formation of a protective transfer film (TF) comprised of metallic Pd. The increase of the applied load (up to 20 N, 1.82 GPa of contact pressure) confirmed the excellent extreme-pressure behavior avoiding the counterfaces from severe wear. After a running-in period whose duration depends on the operating conditions, the TF build-up allows to maintain a low contact electrical resistance through the contact (<0.1 kΩ) during the entire test. When the Pd NPs are used with ceramic counterfaces, the nanoparticles increase the load-bearing capabilities and performance of the base without forming TF, likely by mixed or boundary lubrication and healing effects. Finally, the Pd NPs are demonstrated to be useful as a thin solid lubricant film in reciprocating motion yielding a comparable tribological behavior. Hence, the presented surface Pd NPs can be very helpful to extend life of sliding components due to their high strength resistance providing a gateway to electrical conduction as well.  相似文献   

15.
The effect of starvation on traction and film thickness behavior in thermo-EHL rolling/sliding line contacts has been studied using full EHL simulations. The simulations employed the free volume equation for viscosity–pressure–temperature relationship and Carreau viscosity model to describe the shear-thinning behavior of the EHL lubricant. The simulation results were used to develop equations for estimating the factors by which the traction coefficient increases and film thickness decreases as a function of the degree of starvation. For the situations involving inadequate lubricant supply at the inlet, these factors can be used to correct the traction coefficient and central film thickness predicted with the assumption of fully flooded condition.  相似文献   

16.
Numerical analysis of TEHL line contact problem under reciprocating motion   总被引:7,自引:0,他引:7  
This paper presents a full numerical analysis to simulate the thermal elastohydrodynamic lubrication (TEHL) of steel–steel line contact problem under reciprocating motion. The equation system is solved using multigrid techniques. General tribological behaviors of TEHL under reciprocating motion are explained. Comparison between thermal and isothermal results reveals the importance of thermal effect in prediction of the traction coefficient and film thickness. The influences of frequency, stroke length, and applied load on the variations of film thickness, pressure and traction coefficient during one working cycle are discussed. Furthermore, the influence of slide–roll ratio on tribo-characteristics of oil film under same entraining velocity is revealed.  相似文献   

17.
采用多光束干涉技术观察往复运动条件下润滑油膜的滑移及黏弹特性,研究振幅和频率对往复动态润滑弹流油膜的影响。结果表明:往复运动过程中,在特定时刻气穴的出现使油膜厚度逐渐减小,削弱了滑移程度;因润滑油的黏弹性而引起的运动滞后导致了油膜的非对称性;频率增大时,正行程末端时膜厚明显增大,油膜输送速度也随着增大;而负行程末端油膜受气穴的影响膜厚增大较慢;振幅(输入位移)增大时,正行程末端时油膜整体平移,而负行程末端入口凹陷呈现先变明显而后消失的现象。  相似文献   

18.
A theoretical model for describing the EHL film thickness during rapid deceleration is presented. The theory is based on the pioneer work of Ertel (1939) and Grubin (1949), who gave the first analytical solution for the elastohydrodynamic lubrication of a line contact under stationary operating conditions. An extension is made here for rapid halting motion. The proposed model is well adapted when the halting period is small in comparison to the transit time (i.e. 2b/u, ratio between the contact width and the rolling speed). This work completes the model of Glovnea and Spikes (2001b), appropriate for slow halting motion but which suffers from experimental fitting, and the model of Chang (2000) that is more suitable for speed or load oscillations at a wavelength close to the transit time.

This behavior implies that stop-start, reciprocating or rapidly halting machine components may be able to maintain a separating film for longer than would be expected based on steady-state EHL theory. An application to a ball bearing arrangement in a space mechanism is finally made in order to assess the model capabilities.  相似文献   

19.
This paper describes a geometrical profile, an elastohydrodynamically lubricated point contact surface with a ring flat zone, aimed at building up local line contact elastohydrodynamic lubrication (EHL) in point contact conjunctions to reduce the influence of side-leakage on the central film thickness. Effects of the ring flat zone on the thermal EHL characteristics are studied. A dimensionless coefficient, rW, is defined to represent the relative half width of the ring flat zone in a point contact EHL surface. Thermal EHL numerical simulations have been performed to investigate the influence of rW on the film thickness as well as pressure, temperature and friction coefficients under different operating conditions. In the range of 0≤rW≤1.0 results show that the minimum film thickness decreases with increasing rW and the central film thickness increases with increasing rW, and the influence of rW on the film thickness is more pronounced than those on the maximum pressure, the maximum temperature and the friction coefficients. It is revealed that the proposed ring flat zone with appropriate width is beneficial to the thermal lubrication.  相似文献   

20.
This paper presents a new method for modeling the fluid film lubrication in gears, considering the actual meshing conditions and gear dynamics. The model takes into account both the elastohydrodynamic lubrication (EHL) and the dynamic load between the mating tooth pair. The EHL film is described as a fully flooded elliptical contact.The present approach is validated by means of comparison with other methods found in the literature, in which dynamic effects were neglected. The effect of the gear dynamics on the fluid film is investigated. It is shown that pressure and film thickness are strongly modified by the dynamics of the gear pair.The dependence of the dynamic gear lubrication on dimensionless parameters is investigated: a new dimensionless inertia parameter is added to the standard Moes' parameters. These parameters are useful to describe the lubrication conditions in gear pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号