首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
矿井关闭后,煤岩体在应力、地下水、氧气等多种因素的作用下发生风化劣化、强度降低,采动破裂岩体的应力和承载能力发生改变,易导致采空区地表发生二次形变。现有研究多是集中在矿区开采过程中的地表形变监测,而针对矿井关闭后的地表形变监测研究较少。为探明矿井关闭后地表的形变规律,利用2015-12-21—2019-12-24的62景Sentinel-1A影像,采用短基线集干涉测量(SBAS-InSAR)技术获取了徐州西部关闭矿井(包括庞庄矿、夹河矿和张小楼矿)4 a内时间序列的地表形变结果和形变规律。研究结果表明:3个矿区内地表最大沉降速率达-48 mm/a,4 a累计最大下沉178 mm;夹河矿地表呈现先下沉后抬升现象,而庞庄矿、张小楼矿地表持续下沉;4 a内3个矿区地表最大倾斜变形为1.70 mm/m,最大曲率变形为-0.039 mm/m 2;通过插值统计计算得到庞庄矿、夹河矿和张小楼矿地表形变大于10 mm的形变面积分别为10.5,13.7,11.6 km 2,且呈逐年上升趋势。  相似文献   

2.
岷江上游峡谷区滑坡等地质灾害频发,认识灾害的分布特征及诱因对于减小灾害损失具有重要意义。基于2015~2019年的60景哨兵一号(Sentinel-1A)卫星雷达影像,采用小基线集合成孔径雷达干涉测量(SBAS-InSAR)方法获取了地表雷达视线向形变的时间序列及多年平均速率,分析了地表沉降的分布规律及其同植被覆盖、降水、人类活动等因子的内在联系。结果表明:研究区地表沉降具有明显的坡向分异规律,即快速沉降区多分布于阳坡,年平均沉降速率(-33.02 mm/a)明显快于阴坡(-9.33 mm/a)。针对该地表沉降的坡向分异规律,研究进一步揭示了其环境控制机制:(1)阳坡水分条件胁迫较强而植被覆盖差,不利于地表稳定;(2)地形雨来向多为偏南方向,阳坡受侵蚀较为强烈;(3)阳坡光热条件好,受垦殖等人类活动影响大。由此建议:在岷江上游峡谷区的偏南向边坡,应特别注意防范滑坡等灾害,加强地表形变监测和滑坡灾害预警。  相似文献   

3.
利用干涉点目标分析技术对37景TerraSAR-X数据进行处理,从而准确地估计沿线区域的地表形变。此外,引入同期二等水准测量数据验证了计算结果可靠且精度较高;采用最大信息系数分析高铁的形变及其与影响因素之间的关系,将变形结果与收集的地下水、降水、可压缩层厚度等资料结合,定量描述其与沉降点之间的关系。结果表明,在观测期间,沿着高铁跨丰台区、东城区段年均沉降率小于10mm/a,至朝阳区前段沉降率增大,至中段达40~60mm/a,通州区年均沉降速率稳定;地面沉降与地下水位的变化有很好的响应,地下水开采量的增加和地下水位下降导致该地区的沉降量增加;地面沉降与地质构造有着一定的关系。确定沉降监测的重点区域,为铁路的安全运行提供决策支持。  相似文献   

4.
合成孔径雷达差分干涉测量(DInSAR)技术在地表形变监测方面已得到广泛应用。介绍了将差分InSAR技术运用于矿区地表沉降监测,获得了河北峰峰煤矿地表Envisat/ASAR和ALOS/PALSAR的雷达形变干涉相位图,并对Envisat C波段和ALOS L波段的形变干涉相位图进行了相干特性和相位特性的分析。通过综合考虑C波段和L波段的优势与不足,将两者联合使用,实验表明利用多模式雷达数据对矿区地表沉降进行检测的可行性。同时,通过对雷达干涉相位图的分析,能够及时提供正在进行地下开采活动的矿区地理位置。  相似文献   

5.
地下煤炭资源大量开采导致的地表形变,引发严重的安全和环境隐患,雷达干涉测量技术是高精度、大范围地表形变监测的重要手段之一。以辽宁省沈阳市沈北新区蒲河煤矿为例,采用SBAS-InSAR技术探测2018—2019年矿区地表形变结果,获取了采煤引起地表形变的时空分布特征,结合采场所在区域的地质条件和变形诱发因素,利用数值模拟技术对观测形变结果进行模拟分析,进而讨论了蒲河煤矿地面沉降在时间和空间上的变形规律和机制。InSAR形变监测结果显示,开采区域内存在两处沉降漏斗,且数值模拟结果与InSAR形变观测值分布规律一致,反演结果接近实际情况,可为相关部门制定地面沉降防治措施提供科学依据。  相似文献   

6.
随着城市化进程的加速发展,地面沉降危害不断加剧。以廊坊市城区为示范研究区,选取近5 a的ENVISat卫星ASAR数据,采用永久散射体干涉测量(PS-InSAR)技术,提取廊坊市城区2003~2007年时间序列地面沉降形变信息,并对廊坊市地面沉降空间分布特征进行初步分析。研究结果表明:廊坊市城区年平均沉降速率在-19.2~18.7mm/a之间变化,沉降中心主要分布在城区北部地区,对城市基础设施及施工建设产生严重影响。  相似文献   

7.
通过采用小基线InSAR技术,将离散的DInSAR观测连接起来,获取吉林省九台营城矿区线性地表形变量,通过去除大气延迟相位计算非线性形变量,进而获取时间上连续的沉降场。经实地调查验证,InSAR计算结果较好地吻合了矿区开采范围和地表建筑物破坏情况。最后分析了营城矿区2012年沉降的分布和地表形变随时间的变化情况,揭示矿区沉降漏斗的分布、发展和演化规律。  相似文献   

8.
南迦巴瓦峰地区位于东喜马拉雅构造结的构造变形核心地带,地质构造环境复杂,地质灾害频发,加强对该地区的地表形变监测研究对当地防灾减灾和经济可持续发展有着重要意义。研究利用Sentinel-1卫星数据在该区域开展地表形变监测,通过PS-InSAR技术获得雷达视线方向(Line-Of-Sight, LOS)的形变速率分布与形变时间序列数据,并对地表形变的分布情况和2017年米林M6.9地震的同震形变情况展开分析与讨论。结果发现南迦巴瓦地区地表形变受新生代构造变形影响较大,研究区内的构造形变主要有同震、震后松弛形变和板块边界带的俯冲形变。雅鲁藏布江两侧变形差异较大,北侧呈缓慢的负形变趋势,南侧由于受到俯冲断裂的影响以较高的速率正形变。米林地震的同震形变呈现出西南盘负形变,北东盘正形变且西南盘形变量更大的空间分布特征。研究结果表明:InSAR监测技术可为青藏高原灾害监测和科学研究提供高时空分辨率的地表形变数据。  相似文献   

9.
小基线集合成孔径雷达干涉测量技术(SBAS-InSAR)已成功应用于城市地表形变监测,并表现出极大的潜力和优势。X波段高分辨率雷达卫星在地表微小形变探测方面较C波段和L波段更为敏感。选取覆盖常州地区COSMO-SkyMed高分辨率SAR影像,采用SBAS-InSAR方法获得了地表形变时间序列,对比水准观测数据,分析了干涉测量结果的精度,根据历史地下水位监测数据,分析了地下水水位变化对地表形变的影响。结果表明:干涉测量结果与水准观测数据具有很好的一致性,沉降区域主要发生在武进区,最大沉降量超过-40mm,主城区出现了轻微的回弹现象,回弹达到+5mm;地下水水位持续上升与地面沉降减缓、地面回弹趋势一致,地下水水位变化仍然是常州市地表形变的主要影响因素。  相似文献   

10.
为有效预防地面沉降带来的灾害,利用2015年4月~2018年2月天津地区的24景Sentinel-1A数据,进行了永久散射体干涉测量处理,并使用高精度轨道数据和TanDEM-X DEM修正残差相位,提取了3 a的地面沉降结果,结合土地利用类型、水文、地质和交通等数据,分析了多处沉降地区的特征和形成原因,最后和小基线集方法的监测结果进行对比分析。结果表明:近3 a来天津城区沉降治理效果显著,平均沉降速率在8 mm/a以内,郊区沉降仍然严重,沉降速率在50~70 mm/a,沉降最为严重的区域为武清区王庆坨镇,3 a累计沉降量超过200 mm,并且有和其他沉降漏斗连成片的趋势。地面沉降发生的区域与地下水漏斗形成的区域基本一致,且两种方法得到的累积形变量差值95%在5 mm以内,说明本研究结果可以为天津市地质灾害防治提供数据支撑和决策依据。  相似文献   

11.
Through taking 97 Sentinel-1A SAR images from October 2014 to May 2019 covered most parts of Eastern Gansu province as experimental data, we monitored the surface deformation applying PS-InSAR technique for superimposed data processing based on ISCE and StaMPS to obtain the annual mean LOS rate of surface deformation field. Moreover, we filtered the LOS velocity field using two-dimensional mesh filtering to obtain the variation characteristics of the subsidence center. Our results reveal that there have two patterns of surface deformation. (1) Ground deformation caused by tectonic activity mainly locates around Haiyuan fault, whose mean annual LOS rate of deformation is ~1mm/a. However, there is no obvious deformation near the Liupanshan fault. Meanwhile, the internal deformation of the Ordos Block is subtle. (2) Another surficial deformation caused by mining activity occurs in the regions of Huating Mining Area and Ningzheng Mining Area, in which a ground subsidence funnel has been found. According to the time series deformation characteristic analysis of the settlement center, we know the mean annual LOS rate of deformation in the Huating Mining Area and Ningzheng Mining Area are ~8 mm/a and ~30 mm/a, respectively.  相似文献   

12.
针对常规的通过大地水准测量、GPS测量监测矿区地面沉陷的技术存在监测周期长、成本高、无法全面监测等缺陷,提出了一种基于D-InSAR技术的矿区地面沉陷监测方法。以淮南矿区为试验区,采用两轨法D-InSAR技术,利用该地区2个时相的ALOS PALSAR数据获取了淮南矿区试验时间段内的地面形变图,分析了淮南矿区各矿的地面沉陷信息。结果表明,煤矿开采区存在5~25 cm不同程度的沉陷,与实际情况相符,因此,基于D-InSAR技术的监测方法可以作为一种获取矿区大范围的地表沉陷信息的有效方法。  相似文献   

13.
以围填海活动为代表的沿海快速城市化过程,是引起地面沉降的重要影响因素之一。研究聚焦沿海围填海活动热点区域广州市南沙区,使用2015年6月~2018年4月共34景Sentinel-1数据,应用SBAS-InSAR技术,揭示了南沙区在研究时段内地面沉降的时空变化格局及演变特征。结果表明:①南沙区整体呈现持续沉降的趋势,沉降速率分化严重,平均沉降速率达到3.2 mm/a,圈层分析法显示中心圈层平均沉降速率为2.6 mm/a,最外层平均沉降速率为26.8 mm/a;②该区地面沉降在空间上呈现出异质性,主要分布在东部和南部,其中南部万顷沙、龙穴岛地面沉降最为严重,最大年沉降速率达到72.2 mm/a,在2015年6月~9月还出现地面沉降回弹现象,可能是台风天气带来季节性强降水变化影响。③基于不同极化方式的Sentinel-1数据进行交叉验证,VV极化、VH极化监测结果平均值分别为2.09 mm和1.01 mm,均方根误差分别为1.12 mm和2.65 mm。结果表明:SBAS-InSAR技术在提取围填海区域的地面沉降信息方面是有效可靠的,能更好地为监测沿海地区的地面沉降情况提供科学依据。  相似文献   

14.
With the exploitation of coal resources, ground surface subsidence continues to occur in mining areas, destroying the ecological environment and significantly affecting the daily productivity and life of humans. The differential synthetic aperture radar interferometry (D-InSAR) technique is widely used to monitor ground surface deformation because of its unique advantages such as high accuracy and wide coverage. However, conventional D-InSAR technology provides only one-dimensional (1D) displacement monitoring along the radar line of sight (LOS). This article proposes a method based on an analysis of the mining subsidence law for true three-dimensional (3D) displacement monitoring by combining D-InSAR and a subsidence prediction model based on the probability integral method. In this approach, 1D displacement, obtained using D-InSAR, is then combined with the prediction model to obtain the 3D displacement of ground surface target points. Here, 3D displacement curves were obtained for the Fengfeng mining area (China) using RadarSat-2 images obtained on 9 January and 2 February 2011. True ground surface displacement was measured simultaneously by levelling when the 152under31 s working face was being exploited in Jiulong mine. Vertical displacement and inclined deformation calculated using the proposed method were compared with levelling survey data and the results showed average differences of 3.2 mm and 0.1 mm m?1, respectively; the calculated maximum displacement in the east–west and south–north directions were 106 and 73 mm, respectively. The spatial distribution of the displacements was in accordance with the mining subsidence law. Thus, the new method can retrieve highly accurate 3D displacements caused by mining subsidence.  相似文献   

15.
We present a quantitative assessment of the capability of the differential SAR interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS) approach to investigate fault creep phenomena. In particular we have computed, via the SBAS-DInSAR algorithm, time series of the surface displacements relevant to the Hayward fault zone, within the San Francisco Bay Area (California), from the European Space Agency's ERS-1/2 satellite radar data for the 1992 to 2000 time period. Starting from the DInSAR time series we measured the relative displacements across the fault with no need for any atmospheric filtering step. These results have been systematically compared to the measurements available from the alignment arrays that are located along the fault. Our analysis shows that the standard deviation of the differences between the DInSAR and the in situ measurements is on the order of 2 mm. Moreover, the estimated mean deformation rates have an accuracy that is better than 1 mm/year.  相似文献   

16.
Accurate monitoring of the developing process of a surface subsidence basin is the basis of building damage assessment and surface deformation prediction. In this paper, the Synthetic Aperture Radar (SAR) data of three different imaging geometries, TerraSAR, Radarsat-2, and Sentinel-1A, were exploited. Firstly, two-dimensional (2D) time-series deformation of the surface subsidence basin caused by 15,235 working face mining was obtained based on Multidimensional Small Baseline Subset (MSBAS) technology from 19 December 2015 to 5 March 2016. By comparing vertical deformation with levelling data, it is shown that the root-mean-square error of vertical deformation is 3.2 mm and the standard deviation is 1.9 mm when the ascending-descending track SAR data is available. Otherwise, the root-mean-square error of vertical deformation is 18.1 mm and the standard deviation is 11.6 mm. Because of the low precision of the north–south horizontal movement monitored by the SAR sensor, the vertical deformation acquired by MSBAS technology and the rules of the mining subsidence (horizontal movement is proportional to tilt) were combined to obtain the north–south horizontal movement which was proven to be reliable by comparing the 2D time-series deformation obtained by MSBAS technology. Then, the deformation of the railway in the surface subsidence basin was analysed based on the three-dimensional (3D) time-series deformation. The results show that the subsidence, tilt, and horizontal movement strongly influence the railway in the monitoring period, but will not affect the normal traffic. This experiment lays a technical foundation for preventing the occurrence of mining disasters and verifies the ability to monitor the deformation of buildings and structures by interferometry synthetic aperture radar technology.  相似文献   

17.
ABSTRACT

This study employs interferometric synthetic aperture radar (InSAR) data sets to monitor the surface deformation of the Nasr Abad buried salt diapir in the Central Basin of Iran. The Nasr Abad salt diapir is one of the largest buried salt diapirs in Iran and could be ideal site for oil/gas storage and industrial waste disposal. In this study, we use 40 advanced synthetic aperture radar (ASAR) images from Environmental Satellite (EnviSat) to analyse surface displacement rates of Nasr Abad diapir and its surrounding regions. A time series of line-of-sight (LOS) displacements on the residual cap above the buried diapir were obtained from both descending and ascending images between 2003 and 2010 by applying the Small-BAseline Subset (SBAS) technique. Tropospheric artefacts in the displacement interferograms were mitigated using the power-law correction method in Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) software. Finally, the data for temperature, precipitation, and tidal forces were correlated with the time-series displacement results of four points that located on the residual cap. Our results indicate that surface above the diapir and an area of about 2 km2 subsided with maximum LOS velocity of about 7 mm year?1 for ascending images and 5 mm year?1 for descending images. The amount of vertical subsidence derived from LOS decomposition in reactive stage of Nasr Abad salt body is about 7 mm year?1. Comparing the temperature and precipitation data with the time series of displacement confirmed that the salt expands when temperatures increases and that salt flow accelerates when it is wet. The displacement pattern retrieved from InSAR analysis is in good agreement with intervals near maximum and minimum solid earth tides. Monitoring the activities of the Nasr Abad region over 7 years shows that the region of surface subsidence is confined to the area along the Khurabad and AbShirin-Shurab Fault zones in the southern Central Basin.  相似文献   

18.
Campi Flegrei is an active volcanic district located along the Eastern Tyrrhenian continental margin, Italy, and is worldwide known for dramatic ground deformation phenomena (bradyseism) recorded over the last centuries. The purpose of this article is to present the annual rates of ground deformation fields (average velocity, average acceleration, and combined annual velocity/acceleration) at Campi Flegrei, during almost two decades (years 1993–2010). The research work was conducted based on a temporal analysis and advanced mapping of Persistent Scatterer Pair (PSP) data, obtained from interferometric processing of radar satellite European Remote Sensing-1/2 and Environmental Satellite (ENVISAT) scenes of the study area. Patterns and trends of annual PSP velocity have provided a reconstruction of the spatial and temporal variability of ground deformation in terms of uplift and/or subsidence along the satellite line of sight (LOS). The analysis of annual PSP velocity and acceleration has revealed an intense dynamics of the Campi Flegrei caldera collapse-resurgence system, testified by the high PSP velocity and acceleration values, as well as the significant changes in the rates of ground deformation through time. The main results of this research indicate that the largest ground deformation is localized within and around the structural border of the Campi Flegrei caldera and suggest a systematic recurrence of opposite trends (uplift vs. subsidence) in the ground deformation of the inner caldera region with respect to the surrounding areas throughout the analysed time period.  相似文献   

19.
As is well known, both conventional differential synthetic aperture radar interferometry (D-InSAR) and multi-temporal synthetic aperture radar interferometry (MT-InSAR) have a common limitation that they only can measure the deformation component along the radar line of sight (LOS) direction. However, in the majority of disaster investigations, there is more interest in the vertical deformation component than that of the horizontal direction, for example, in measuring ground subsidence in urban areas, or ground subsidence due to underground mining. To estimate the vertical deformation component accurately, it is in theory necessary to create at least three independent equations, and solve the vertical, the North–South, and the East–West deformation components by exploiting at least three-track InSAR LOS measurements or combining at least two-track InSAR LOS measurements with azimuth measurements. However, these methods are greatly limited and sometimes not even practical because there is typically little chance of obtaining a three-track SAR data set covering the same area in the same time span, and the accuracy of the azimuth measurements is far lower than that of InSAR LOS measurements. In this article, we found that it is possible to solve for the vertical deformation component from two-track InSAR LOS measurements in some circumstances. Then, an approach for accurately retrieving the vertical deformation component from two-track InSAR LOS measurements is proposed, and the analytical expression is presented. The approach is illustrated through an investigation of the ground subsidence in an area of Beijing, China. Unlike previous methods, this approach can accurately retrieve the vertical deformation component from two-track InSAR LOS measurements, and provide more reliable results for improving the interpretation of ground subsidence phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号