首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An implementation of the IF section of WCDMA mobile transceivers with a set of two chips fabricated in an inexpensive 0.35-/spl mu/m two-poly three-metal CMOS process is presented. The transmit/receive chip set integrates quadrature modulators and demodulators, wide dynamic range automatic gain control (AGC) amplifiers, with linear-in-decibel gain control, and associated circuitry. This paper describes the problems encountered and the solutions envisaged to meet stringent specifications, with process and temperature variations, thus overcoming the limitations of CMOS devices, while operating at frequencies in the range of 100 MHz-1 GHz. Detailed measurement results corroborating successful application of the new techniques are reported. A receive AGC dynamic range of 73 dB with linearity error of less than /spl plusmn/2 dB and spread of less than 5 dB for a temperature range of -30/spl deg/C to +85/spl deg/C in the gain control characteristic has been measured. The modulator measurement shows a carrier suppression of 35 dB and sideband/third harmonic suppression of over 46 dB. The core die area of each chip is 1.5 mm/sup 2/.  相似文献   

2.
A single-chip CMOS global system for mobile communications/digital cellular system dual-band offset phase-locked loop (OPLL) transmitter is presented in this paper. This chip includes a quadrature modulator and an OPLL modulation loop. Except for the loop filter and high-power voltage-controlled oscillator (TX VCO), everything is integrated into this chip to form a dual-band transmitter. This transmitter integrated circuit is fabricated in a 0.25-mum CMOS process. The current consumption without the TX VCO is approximately 23 mA under 2.7-V power supply for both bands. The measured rms and peak phase errors for Gaussian minimum shift-keying (GMSK) modulated signals are approximately 1deg and 2.4deg, respectively. The measurements show comparable performance to its BiCMOS counterparts  相似文献   

3.
This paper describes a fully integrated single-chip CMOS mixed-signal system on a chip (SoC) for DVD player applications. It integrates one digital signal processor (DSP), two 32-bit CPUs, three dedicated processing units, a partial response maximum likelihood (PRML) read channel with an analog front end (AFE), and many other subsystems on the same die. The AFE includes a fifth-order G/sub m/-C filter and attains over 66 dB C/N overall. PR(3,4,4,3) structure is employed in the PRML read channel. Owing to the PRML signal processing and the mixed-signal system level optimization in the PRML read channel, less than 10/sup -6/ of bit-error rate (BER) is obtained for the focus offset margins over /spl plusmn/0.5 /spl mu/m. This SoC is fabricated in 0.13-/spl mu/m one-poly six-Cu CMOS technology. It contains 24 million transistors in a 63.87 mm/sup 2/ die and consumes 1.5 W at 40 MSample/s data rate, which corresponds to DVD 1.5 times playback operation mode.  相似文献   

4.
5.
This paper describes the results of an implementation of a Bluetooth radio in a 0.18-/spl mu/m CMOS process. A low-IF image-reject conversion architecture is used for the receiver. The transmitter uses direct IQ-upconversion. The VCO runs at 4.8-5.0 GHz, thus facilitating the generation of 0/spl deg/ and 90/spl deg/ signals for both the receiver and transmitter. By using an inductor-less LNA and the extensive use of mismatch simulations, the smallest silicon area for a Bluetooth radio implementation so far can be reached: 5.5 mm/sup 2/. The transceiver consumes 30 mA in receive mode and 35 mA in transmit mode from a 2.5 to 3.0-V power supply. As the radio operates on the same die as baseband and SW, the crosstalk-on-silicon is an important issue. This crosstalk problem was taken into consideration from the start of the project. Sensitivity was measured at -82 dBm.  相似文献   

6.
The paper describes a bioluminescence detection lab-on-chip consisting of a fiber-optic faceplate with immobilized luminescent reporters/probes that is directly coupled to an optical detection and processing CMOS system-on-chip (SoC) fabricated in a 0.18-/spl mu/m process. The lab-on-chip is customized for such applications as determining gene expression using reporter gene assays, determining intracellular ATP, and sequencing DNA. The CMOS detection SoC integrates an 8 /spl times/ 16 pixel array having the same pitch as the assay site array, a 128-channel 13-bit ADC, and column-level DSP, and is fabricated in a 0.18-/spl mu/m image sensor process. The chip is capable of detecting emission rates below 10/sup -6/ lux over 30 s of integration time at room temperature. In addition to directly coupling and matching the assay site array to the photodetector array, this low light detection is achieved by a number of techniques, including the use of very low dark current photodetectors, low-noise differential circuits, high-resolution analog-to-digital conversion, background subtraction, correlated multiple sampling, and multiple digitizations and averaging to reduce read noise. Electrical and optical characterization results as well as preliminary biological testing results are reported.  相似文献   

7.
This letter presents a complementary metal oxide semiconductor (CMOS) voltage-controlled oscillator (VCO) with a high-Q inductor in a wafer-level package for the LC-resonator. The on-chip inductor is implemented using the redistribution metal layer of the wafer-level package (WLP), and therefore it is called a WLP inductor. Using the thick passivation and copper metallization, the WLP inductor has high quality-factor (Q-factor). A 2-nH inductor exhibits a Q-factor of 8 at 2 GHz. The center frequency of the VCO is 2.16 GHz with a tuning range of 385 MHz (18%). The minimum phase noise is measured to be -120.2 dBc/Hz at an offset frequency of 600 kHz. The dc power consumed by the VCO-core is 1.87 mW with a supply voltage of 1.7 V and a current of 1.1 mA. The output power with a 50-/spl Omega/ load is -12.5/spl plusmn/1.3 dBm throughout the whole tuning range. From the best of our knowledge, compared with recently published 2-GHz-band 0.35 /spl mu/m CMOS VCOs in the literature, the VCO in this work shows the lowest power consumption and the best figure-of-merit.  相似文献   

8.
Scaling of CMOS technologies has a great impact on analog design. The most severe consequence is the reduction of the voltage supply. In this paper, a low voltage, low power, AC-coupled folded-switching mixer with current-reuse is presented. The main advantages of the introduced mixer topology are: high voltage gain, moderate noise figure, moderate linearity, and operation at low supply voltages. Insight into the mixer operation is given by analyzing voltage gain, noise figure (NF), linearity (IIP3), and DC stability. The mixer is designed and implemented in 0.18-/spl mu/m CMOS technology with metal-insulator-metal (MIM) capacitors as an option. The active chip area is 160 /spl mu/m/spl times/200 /spl mu/m. At 2.4 GHz a single side band (SSB) noise figure of 13.9 dB, a voltage gain of 11.9 dB and an IIP3 of -3 dBm are measured at a supply voltage of 1 V and with a power consumption of only 3.2 mW. At a supply voltage of 1.8 V, an SSB noise figure of 12.9 dB, a voltage gain of 16 dB and an IIP3 of 1 dBm are measured at a power consumption of 8.1 mW.  相似文献   

9.
A fully integrated matrix amplifier with two rows and four columns (2-by-4) fabricated in a three-layer metal 0.18-/spl mu/m silicon-on-insulator (SOI) CMOS process is presented. It exhibits an average pass-band gain of 15 dB and a unity-gain bandwidth of 12.5 GHz. The input and output ports are matched to 50 /spl Omega/ using m-derived half sections; the measured S/sub 11/ and S/sub 22/ values exceed -7 and -12 dB, respectively. Integrated in 2.0/spl times/2.9mm/sup 2/, it dissipates 233.4 mW total from 2.4- and 1.8-V power supplies.  相似文献   

10.
Using experiment and simulation, transistors in a high-energy implanted N-well are designed for optimum device performance suitable for 1-/spl mu/m CMOS technology. The effect of process parameters on device performance is obtained. Superior body effect, junction capacitance, punchthrough voltage, and subthreshold slope are achieved for 1-/spl mu/m n- and p-channel transistors. With shallow P/P+ epitaxial material, this retrograde N-well approach also provides latch-up immunity for high-density CMOS.  相似文献   

11.
High-performance 1.0-/spl mu/m n-well CMOS/bipolar on-chip technology was developed. For process simplicity, an n-well and a collector of bipolar transistors were formed simultaneously, and base and NMOS channel regions were also made simultaneously resulting in collector-isolated vertical n-p-n bipolar transistor fabrication without any additional process step to CMOS process. On the other hand, 1.0-/spl mu/m CMOS with a new "hot carrier resistant" seIf-defined Polysilicon sidewall spacer (SEPOS) LDD NMOS was developed. It can operate safely under supply voltage over 5 V without performance degradation of CMOS circuits. By evaluating ring oscillators and differential amplifiers constructed by both CMOS and bipolar transistors. it can be concluded that in a digital and in an analog combined system, CMOS has sufficiently high-speed performance for digital parts, while bipolar is superior for analog parts. In addition, bipolar transistors with an n/sup +/-buried layer were also fabricated to reduce collector resistance. Concerning the bipolar input/output buffers, the patterned n/sup +/-buried layer improves the drivability and high-frequency response. As a result, the applications of n-well CMOS/bipolar technology become clear. This technology was successfully applied to a high-speed 64-kbit CMOS static RAM, and improvement in access time was observed.  相似文献   

12.
A downconversion double-balanced oscillator mixer using 0.18-/spl mu/m CMOS technology is proposed in this paper. This oscillator mixer consists of an individual mixer stacked on a voltage-controlled oscillator (VCO). The stacked structure allows entire mixer current to be reused by the VCO cross-coupled pair to reduce the total current consumption of the individual VCO and mixer. Using individual supply voltages and eliminating the tail current source, the stacked topology requires 1.0-V low supply voltage. The oscillator mixer achieves a voltage conversion gain of 10.9 dB at 4.2-GHz RF frequency. The oscillator mixer exhibits a tuning range of 11.5% and a single-sideband noise figure of 14.5 dB. The dc power consumption is 0.2 mW for the mixer and 2.94 mW for the VCO. This oscillator mixer requires a lower supply voltage and achieves a higher operating frequency among recently reported Si-based self-oscillating mixers and mixer oscillators. The mixer in this oscillator mixer also achieves a low power consumption compared with recently reported low-power mixers.  相似文献   

13.
A high-resolution multibit sigma-delta analog-to-digital converter (ADC) implemented in a 0.18-/spl mu/m CMOS technology is introduced. The circuit is targeted for an asymmetrical digital subscriber line (ADSL) central-office (CO) application . An area- and power-efficient realization of a second-order single-loop 3-bit modulator with an oversampling ratio of 96 is presented. The /spl Sigma//spl Delta/ modulator features an 85-dB dynamic range over a 300-kHz signal bandwidth. The measured power consumption of the ADC core is only 15 mW. An innovative biasing circuitry is introduced for the switched-capacitor integrators.  相似文献   

14.
This letter presents a 0.13-/spl mu/m CMOS frequency divider realized with an injection-locking ring oscillator. This topology can achieve a larger input frequency range and better phase accuracy with respect to injection-locking LC oscillators, because of the smoother slope of the loop gain phase-frequency plot. Post layout simulations show that the circuit is able to divide an input signal spanning from 7 to 19GHz, although the available tuning range of the signal source limited the experimental verification to the interval 11-15GHz, featuring a 31% locking range. The divider dissipates 3mA from a 1.2-V power supply.  相似文献   

15.
A fully integrated system-on-a-chip (SOC) intended for use in 802.11b applications is built in 0.18-/spl mu/m CMOS. All of the radio building blocks including the power amplifier (PA), the phase-locked loop (PLL) filter, and the antenna switch, as well as the complete baseband physical layer and the medium access control (MAC) sections, have been integrated into a single chip. The radio tuned to 2.4 GHz dissipates 165 mW in the receive mode and 360 mW in the transmit mode from a 1.8-V supply. The receiver achieves a typical noise figure of 6 dB and -88-dBm sensitivity at 11 Mb/s rate. The transmitter delivers a nominal output power of 13 dBm at the antenna. The transmitter 1-dB compression point is 18 dBm and has over 20 dB of gain range.  相似文献   

16.
A 2-/spl mu/m CMOS VLSI digital signal processor (DSP) family, the SP50, is described that is capable of eight million instructions per second and up to six concurrent operations in each instruction. Two DSPs, the PCB5010 and PCB5011, have been developed. Both are based on a common architecture which contains two 16-bit data buses, and a 16/spl times/16/spl rarr/40-bit multiplier accumulator and 16-bit ALU, both with multiprecision support in hardware. Also implemented are two static data RAMs (128/spl times/16 or 256/spl times/16), a data ROM (51/spl times/16), a 15-word three-port register file, three address computation units, and five serial and parallel I/O interfaces. The data path is controlled by an orthogonal instruction set, using 40-bit microcode words. The controller contains a five-level stack and an instruction repeat register, and can have either on-chip program memory (RAM: 32/spl times/40; ROM: 987/spl times/40) or off-chip program memory (up to 64K/spl times/40). Benchmarks show a two to sixfold improvement in overall performance over its predecessors.  相似文献   

17.
This paper presents the design of three- and nine-stage voltage-controlled ring oscillators that were fabricated in TSMC 0.18-/spl mu/m CMOS technology with oscillation frequencies up to 5.9 GHz. The circuits use a multiple-pass loop architecture and delay stages with cross-coupled FETs to aid in the switching speed and to improve the noise parameters. Measurements show that the oscillators have linear frequency-voltage characteristics over a wide tuning range, with the three- and nine-stage rings resulting in frequency ranges of 5.16-5.93 GHz and 1.1-1.86 GHz, respectively. The measured phase noise of the nine-stage ring oscillator was -105.5 dBc/Hz at a 1-MHz offset from a 1.81-GHz center frequency, whereas the value for the three-stage ring oscillator was simulated to be -99.5 dBc/Hz at a 1-MHz offset from a 5.79-GHz center frequency.  相似文献   

18.
A two-stage self-biased cascode power amplifier in 0.18-/spl mu/m CMOS process for Class-1 Bluetooth application is presented. The power amplifier provides 23-dBm output power with a power-added efficiency (PAE) of 42% at 2.4 GHz. It has a small signal gain of 38 dB and a large signal gain of 31 dB at saturation. This is the highest gain reported for a two-stage design in CMOS at the 0.8-2.4-GHz frequency range. A novel self-biasing and bootstrapping technique is presented that relaxes the restriction due to hot carrier degradation in power amplifiers and alleviates the need to use thick-oxide transistors that have poor RF performance compared with the standard transistors available in the same process. The power amplifier shows no performance degradation after ten days of continuous operation under maximum output power at 2.4-V supply. It is demonstrated that a sliding bias technique can be used to both significantly improve the PAE at mid-power range and linearize the power amplifier. By using the sliding bias technique, the PAE at 16 dBm is increased from 6% to 19%, and the gain variation over the entire power range is reduced from 7 to 0.6 dB.  相似文献   

19.
An analysis of regenerative dividers predicts the required phase shift or selectivity for proper operation. A divider topology is introduced that employs resonance techniques by means of on-chip spiral inductors to tune out the device capacitances. Configured as two cascaded /spl divide/2 stages, the circuit achieves a frequency range of 2.3 GHz at 40 GHz while consuming 31 mW from a 2.5-V supply.  相似文献   

20.
An analog Gaussian frequency shift keying (GFSK) modulator designed in 0.35-/spl mu/m CMOS consumes 600 /spl mu/A from a 3-V supply and realizes an analog implementation of the FM differential equation. The modulator operates at baseband and is intended for use in a direct-conversion Bluetooth transmitter. It achieves a frequency deviation of 160 kHz with better than /spl plusmn/3% accuracy. The modulator implements an amplitude control loop to achieve a well-defined output swing. The total output harmonic distortion is less than 1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号