共查询到20条相似文献,搜索用时 0 毫秒
1.
A solution procedure for elastic contact fracture mechanics has been proposed in this paper. The procedure is based on the quadratic programming and finite element method (FEM). In this paper, parametric quadratic programming method for two-dimensional contact mechanics analysis is applied to the crack problems involving the crack surfaces in frictional contact. Based on a linear complementary contact condition, the parametric variational principle and FEM, a linear complementary method is extended to analyze contact fracture mechanics. The near-tip fields are properly modeled in the analysis using special crack tip elements with quarter-point nodes. Stress intensity factor solutions are presented for some frictional contact fracture problems and are compared with known results where available. 相似文献
2.
利用ANSYS对某型号电连接器接触件应力场进行分析,以寻找应力变化规律.对接触件应力场分布特点、插孔形变、接触压力随温度升高的变化规律进行了仿真研究,并进行数据分析与接触压力的试验验证.结果表明:随着温度升高,插孔最大形变量增加,最大接触压力和接触压力区域都有所减少;尺寸较小的接触件插孔槽缝底部最大等效应力随温度升高增幅较大,交变载荷作用时易出现疲劳、破裂等,属产品失效薄弱点.通过分析得知最大等效应力值随温度上升而变化的趋势取决于温度软化效应和热应力增强作用的综合结果;仿真结果能较好地反映电连接器的工作应力状态,接触压力试验验证了有限元仿真方法的可行性. 相似文献
3.
Frictional contact analysis of multiple cracks by incremental displacement and resultant traction boundary integral equations 总被引:3,自引:0,他引:3
Based on the merits of the dual boundary element technique, a modified dual boundary element technique is extended to deal with the frictional contact of a finite plate with arbitrarily distributed multiple cracks. Besides establishing the incremental displacement boundary integral equation on the outer boundary, the resultant traction boundary integral equation on one of the crack surfaces is also developed. Since the resultant traction instead of incremental traction on the crack surface is introduced, the computed resultant contact tractions under sliding condition satisfy the Coulomb's friction law directly. Hence, as compared with the authors' previous work, only very few computation iterations are required by this method to accurately describe the contact situations of crack surfaces. As a result, not only the linear cracks, but also other types of multiple cracks, for example, curved and kinked cracks, can be tackled. The effects of friction and interaction among cracks on the computation of stress intensity factors are also displayed. 相似文献
4.
Usually many researchers have used the modified Hertzian contact law or experimental static indentation law to analyze impact response of composite laminates subjected to low-velocity impact. In this study, physical meaning of the analytical method using the laws was investigated and the difference between the analytical results obtained using the two laws was also investigated. Furthermore parametric study on contact coefficient and exponent of the contact law was performed. Finally it could be shown that linearized contact law could be well applied to the low-velocity impact analysis of composite laminates. If this concept is used, any general-purpose finite element method software can be used to solve impact problem without direct developing any FEM code by each researcher. In this paper, some analytical results analyzed using a general-purpose commercial FEM software were also presented. 相似文献
5.
A general boundary element formulation for contact problems, capable of dealing with local elastoplastic effects and friction, is presented. Both conforming and non-conforming problems may be analysed. The contact problem is solved by means of a direct constraint technique, in which compatibility and equilibrium conditions are directly enforced in the general system of equations. The contact areas are modelled with linear interpolation functions, and quadratic interpolation functions are used everywhere else. Elastoplasticity is solved by a BEM initial strain approach The Von Mises yield criterion with its associated flow rule is adopted. Both perfectly plastic and work hardening materials are studied in the proposed formulation.
An incremental loading technique is proposed, which allows accurate development of the loading history of the problem. The non-linear nature of these problems demands the use of an iterative procedure, to determine the correct frictional conditions at every node of the contact area and the value of the plastic strains at selected points where local yielding may have occurred. Several numerical examples are presented to demonstrate the efficiency of the proposed formulation. 相似文献
6.
C. H. Wang 《Fatigue & Fracture of Engineering Materials & Structures》2000,23(6):477-488
This article presents an analytical and numerical study of the fatigue crack‐closure behaviour of a bridged crack representing a crack that has been repaired by a composite patch. It is shown that, provided that the plate stress beneath the patch is less than 40% of the material’s yield stress, the crack‐closure stress of a patched crack is approximately equal to that of an unbridged crack under small‐scale yielding, depending only on the stress ratio. Furthermore, it is shown that the transient crack‐closure behaviour of a patched crack subjected to variable amplitude loading can be determined by analysing an unpatched crack subjected to the same stress intensity factor history. Based on these findings, it is proposed that the fatigue crack closure of a patched crack can be determined by analysing an unpatched centre crack subjected to an adjusted stress, for which an explicit expression is given. Predictions based on the proposed method are shown to correlate very well with experimental results obtained under two aircraft loading spectra. 相似文献
7.
8.
Reliability assessment for ultimate longitudinal strength of ship hulls in composite materials 总被引:5,自引:0,他引:5
A method for reliability assessment of the ultimate longitudinal strength of ship hulls in composite materials is described. The ultimate longitudinal strength of a ship hull is predicted by a progressive collapse analysis based on load–average strain curves of stiffened composite panels that are developed by a progressive failure nonlinear finite element analysis. Sagging, hogging and slamming conditions are regarded as three extreme loading conditions and the corresponding limit state functions are established with an appropriate stochastic modeling of the basic design variables, such as the modeling uncertainties, the materials properties, the lamina thickness, the lamination angle, the still-water moment, the wave-induced moment, and the slamming-induced moment. The reliability estimation is achieved by an improved first-order reliability algorithm. The sensitivities of the reliability estimates with respect to model parameters are determined and those parameters with small sensitivity factors are replaced by deterministic values to improve the computational efficiency in the prediction of the ultimate longitudinal strength of ship hull. An all-composite ship is analyzed for demonstration. 相似文献
9.
A finite element model is presented to predict the stresses and deformations in steel-concrete composite beams. The model takes into account the effect of cracking and tension-stiffening in the tensed concrete, and of longitudinal slip between the steel beam and the concrete slab due to the ‘partial interaction’ of theconnectors. Some comparisons with experimental data available in literature are reported to validate the efficiency of the proposed model. Finally, a parametric study was done to investigate the effects of the geometric and mechanical variables as boundary conditions and the slip modulus of the connectors. 相似文献
10.
A model has been developed for predicting the stiffness of cross-ply carbon fibre composite laminates containing a notch from which damage, in the form of matrix cracks, splits and delaminations, has grown. A combination of experimental and theoretical results have been used to deduce appropriate degraded stiffness properties for the damaged regions of the laminate. These degraded stiffnesses have then been incorporated into a finite element representation of the notched laminate to predict the overall stiffness. Agreement with experimental data is satisfactory. 相似文献
11.
A damage-based model for post-fatigue notch strength is presented. The model is an extension of a method developed previously to predict the notch strength of laminated composites. A simple finite element representation of the notch tip damage zone is used to obtain the localized damage-modified stress distribution. A uniaxial tensile stress failure criterion is applied to the 0° plies from which the laminate strength is evaluated. In conjunction with the fatigue damage growth law described in Part II, residual strength is calculated as a function of the applied loading conditions, specimen geometry and lay-up for (90/0)s, (90/0)2s and (902/02)s T300/914C carbon-fibre/epoxy laminates subjected to tension-tension fatigue cycling. 相似文献
12.
A super finite element method that exhibits coarse-mesh accuracy is used to predict the transient response of laminated composite plates and cylindrical shells subjected to non-penetrating impact by projectiles. The governing equations are based on the classical theories of thin laminated plates and shells taking into account the von Karman kinematics assumptions for moderately large deflections. A non-linear Hertzian-type contact law accounting for curvatures of the colliding bodies is adopted to calculate the impact force . The theoretical basis of the present finite element model is verified by analysing impact-loaded laminated composite plate and shell structures that have previously been studied through analytical or other numerical procedures. The predictive capability of the present numerical approach is successfully demonstrated through comparisons between experimentally-measured and computed force-time histories for impact of carbon fibre-reinforced plastic (CFRP) plates. The current computational model offers a relatively simple and efficient means of predicting the structural impact response of laminated composite plates and shells. 相似文献
13.
14.
In the present investigation, higher-order and conventional first-order shear deformation theories are used to study the impact
response of composite sandwich shells. The formulation is based on Donnell’s shallow shell theory. Nine-noded Lagrangian elements
are used for the finite element formulation. A modified Hertzian contact law is used to calculate the contact force. The results
obtained from the present investigation are found to compare well with those existing in the open literature. The numerical
results are presented to study the changes in the impact response due to the increase of core depth from zero to some specified
value and the changes in core stiffness for a particular core depth. 相似文献
15.
Kikuo Kishimoto Hirotsugu Inoue Toshikazu Shibuya 《Engineering Analysis with Boundary Elements》1995,15(4):329-337
A boundary element method (BEM) is applied to thermoelastic contact problems where thermal resistance at the contact interface is not negligible. The displacement, traction, temperature and temperature gradient in the contact zone are unknown quantities to be determined numerically. Due to the existence of thermal resistance, temperature and stress fields are mutually coupled. To solve the problem, two kinds of methods are presented. In the first method, the solution is obtained by minimizing a suitably defined objective function. In the second method, discretized equations of each of the bodies in contact are computed alternately until all prescribed boundary conditions are satisfied. The applicability of these methods to practical problems is examined through several numerical examples. 相似文献
16.
基于有限元法的过盈配合接触特性分析 总被引:2,自引:0,他引:2
以某风力发电用齿轮箱为例,采用有限元法对斜齿轮与空心轴的三维弹性有摩擦接触问题进行了分析,针对不同工况、不同过盈量和摩擦系数下的过盈配合进行计算,获得了齿轮孔和轴之间接触压力和摩擦应力的分布随载荷、过盈量和摩擦系数的变化规律,为轴与轮毂之间合理过盈量的选择提供依据. 相似文献
17.
An augmented finite element method (“A-FEM”) is presented that is a variant of the method of Hansbo and Hansbo (Comput Methods Appl Mech Eng, 193: 3523–3540, 2004), which can fully account for arbitrary discontinuities that traverse the interior of elements. Like the method of Hansbo and Hansbo, the A-FEM preserves elemental locality, because element augmentation is implemented within single elements and involves nodal information from the modified element only. The A-FEM offers the additional convenience that the augmentation is implemented via separable mathematical elements that employ standard finite element nodal interpolation only. Thus, the formulation is fully compatible with standard commercial finite element packages and can be incorporated as a user element without access to the source code. Because possible discontinuities include both elastic heterogeneity and cracks, the A-FEM is ideally suited to modeling damage evolution in structural or biological materials with complex morphology. Elements of a multi-scale approach to analyzing damage mechanisms in laminated or woven textile composites are used to validate the A-FEM and illustrate its possible uses. Key capabilities of the formulation include the use of meshes that need not conform to the surfaces of heterogeneities; the ability to apply the augmented element recursively, enabling modeling of multiple discontinuities arising on different, possibly intersecting surfaces within an element; and the ease with which cohesive zone models of nonlinear fracture can be incorporated. 相似文献
18.
Fushen Liu Ronaldo I. Borja 《International journal for numerical methods in engineering》2008,76(10):1489-1512
We present an incremental quasi‐static contact algorithm for path‐dependent frictional crack propagation in the framework of the extended finite element (FE) method. The discrete formulation allows for the modeling of frictional contact independent of the FE mesh. Standard Coulomb plasticity model is introduced to model the frictional contact on the surface of discontinuity. The contact constraint is borrowed from non‐linear contact mechanics and embedded within a localized element by penalty method. Newton–Raphson iteration with consistent linearization is used to advance the solution. We show the superior convergence performance of the proposed iterative method compared with a previously published algorithm called ‘LATIN’ for frictional crack propagation. Numerical examples include simulation of crack initiation and propagation in 2D plane strain with and without bulk plasticity. In the presence of bulk plasticity, the problem is also solved using an augmented Lagrangian procedure to demonstrate the efficacy and adequacy of the standard penalty solution. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
19.
20.
The thermal postbuckling behavior of graphite/epoxy multi-layered rectangular plates of various boundary conditions is studied using the finite element method. Temperature dependent thermal and elastic properties of the material are used in the analysis. The nonlinear finite element equations are solved as a sequence of linear eigenvalue problems to trace the thermal postbuckling paths of 15-layered symmetric angle-ply plates. The presence of secondary instability with an unsymmetric deformation mode has been identified for symmetric laminates under uniform temperature rise. In the case of linearly varying temperature rise through the thickness of the plate, the nonlinear equilibrium equations are solved by the modified Newton–Raphson technique to get the temperature-displacement curves. 相似文献