首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel technique for attenuated total reflection Fourier transform infrared (ATR FT-IR) spectral acquisition by an infrared microscope with a gem-quality faceted diamond as an internal reflection element (IRE) is introduced. Unlike conventional IREs, the novel diamond IRE has a sharp tip configuration instead of a flat tip configuration. Light at normal incidence was coupled into the diamond while the transflected radiation from the diamond was collected through the table facet by the built-in 15x Cassegrainian objective. The number of reflections in the novel diamond IRE equals two. The evanescent field generated under total internal reflection at the pavilion facet was exploited for ATR spectral acquisition of materials attached to the IRE. The observed ATR spectra were compared to those obtained via a traditional zinc selenide IRE.  相似文献   

2.
The diffuse reflectance of infra-red energy from microcapsules was shown to be a useful analytical technique to study the structural properties of microcapsules. The technique of diffuse reflectance is unique in that the anisotropic nature of reflected light enables spectral differences to be explained on the basis of molecular orientation. As a result of the collection and analysis of diffuse spectra, spectral differences that may correspond to structural differences in the capsule wall structure were found to be dependent on the core material. More specifically, in microcapsules of kaolin and talc, produced with a block copolymer of d-tartaric acid and 1,8-octanediol, the relative orientation of hydroxyl functional groups for the respective core materials differed by forty-nine degrees while carbonyl groups differed by 15 degrees.  相似文献   

3.
Photoluminescence and Raman spectroscopy were employed to investigate the broad band luminescence in thin diamond films grown on a silicon substrate by the HF CVD technique. The broad band luminescence with a maximum emission at 1.8–2 eV observed for CVD diamonds is characteristic for amorphous carbon with sp2-hybridized carbon bonds. As was shown by the Raman spectroscopy our diamond layer contained certain amounts of amorphous carbon phase and diamond nanocrystals which were the source of an additional energy state within the diamond energy gap. The experimental results precluded the possibility of broad band luminescence being due to the electron–lattice interaction. The amorphous carbon and diamond nanocrystals admixture in polycrystalline diamond layer introduced a defect state in the energy gap not in the form of point defects but rather in the form of a line or extended defects. In consequence these extended defects were responsible for the broad PL spectrum in the CVD diamond films.  相似文献   

4.
Abstract

The diffuse reflectance of infra-red energy from microcapsules was shown to be a useful analytical technique to study the structural properties of microcapsules. The technique of diffuse reflectance is unique in that the anisotropic nature of reflected light enables spectral differences to be explained on the basis of molecular orientation. As a result of the collection and analysis of diffuse spectra, spectral differences that may correspond to structural differences in the capsule wall structure were found to be dependent on the core material. More specifically, in microcapsules of kaolin and talc, produced with a block copolymer of d-tartaric acid and 1,8-octanediol, the relative orientation of hydroxyl functional groups for the respective core materials differed by forty-nine degrees while carbonyl groups differed by 15 degrees.  相似文献   

5.
Lu HC  Cheng BM 《Analytical chemistry》2011,83(17):6539-6544
Various diamonds were analyzed with photoluminescence (PL) spectra excited with synchrotron radiation in the wavelength range 160-250 nm. The emission of type IaAB diamond begins near 300 nm and extends to 700 nm; two broad lines with maximums about 419 and 469 nm correspond to energies 2.96 and 2.64 eV, respectively. The spectral features observed in the PL excitation spectra show two vibrational progressions, A and B, related to nitrogen defects in diamond. Progression A has a spacing 1266 ± 20 cm(-1) and is associated with the N2 (or A) center of a nitrogen defect, whereas progression B has a spacing 1177 ± 20 cm(-1) related to the N4 (or B) center of a nitrogen defect. These vibrational progressions in PL excitation spectra of N2 and N4 centers in type IaAB diamond are here identified for the first time. We suggest the use of PL spectra excited in the region 170-240 nm to analyze and to identify the type of diamond.  相似文献   

6.
Yang JM  Han YH  Yoon G  Ahn BS  Lee BC  Soh KS 《Applied optics》2007,46(23):5991-6003
A fiber-based reflectance imaging system was constructed to produce in vivo absorption spectroscopic images of biological tissues with diffuse light in the cw domain. The principal part of this system is the 783-channel fiber probe, composed of 253 illumination fibers and 530 detection fibers distributed in a 20x20 mm square region. During illumination with the 253 illumination fibers, diffuse reflected lights are collected by the 530 detection fibers and recorded simultaneously as an image with an electron multiplying CCD camera for fast data acquisition. After signal acquisition, a diffuse reflectance image was reconstructed by applying the spectral normalization method we devised. To test the applicability of the spectral normalization, we conducted two phantom experiments with chicken breast tissue and white Delrin resin by using animal blood as an optical inhomogeneity. In the Delrin phantom experiment, we present images produced by two methods, spectral normalization and reference signal normalization, along with a comparison of the two. To show the feasibility of our system for biomedical applications, we took images of a human vein in vivo with the spectral normalization method.  相似文献   

7.
We present a constrained spectral unmixing method to remove highlight from a single spectral image. In the constrained spectral unmixing method, the constraints have been imposed so that all the fractions of diffuse and highlight reflection sum up to 1 and are positive. As a result, the spectra of the diffuse image are always positive. The spectral power distribution (SPD) of the light source has been used as the pure highlight spectrum. The pure diffuse spectrum of the measured spectrum has been chosen from the set of diffuse spectra. The pure diffuse spectrum has a minimum angle among the angles calculated between spectra from a set of diffuse spectra and the measured spectrum projected onto the subspace orthogonal to the SPD of the light source. The set of diffuse spectra has been collected by an automated target generation program from the diffuse part in the image. Constrained energy minimization in a finite impulse response linear filter has been used to detect the highlight and diffuse parts in the image. Results by constrained spectral unmixing have been compared with results by the orthogonal subspace projection (OSP) method [Proceedings of International Conference on Pattern Recognition (2006), pp. 812-815] and probabilistic principal component analysis (PPCA) [Proceedings of the 4th WSEAS International Conference on Signal Processing, Robotics and Automation (2005), paper 15]. Constrained spectral unmixing outperforms OSP and PPCA in the visual assessment of the diffuse results. The highlight removal method by constrained spectral unmixing is suitable for spectral images.  相似文献   

8.
Carboxylated/oxidized diamond nanoparticles (nominal size 100 nm) exhibit exceptionally high affinity for proteins through both hydrophilic and hydrophobic forces. The affinity is so high that proteins in dilute solution can be easily captured by diamonds, simply separated by centrifugation, and directly analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). No preseparation of the adsorbed molecules from diamonds is required for the mass spectrometric analysis. Compared to conventional MALDI-TOF-MS, an enhancement in detection sensitivity by more than 2 orders of magnitude is achieved for dilute solution containing cytochrome c, myoglobin, and albumin because of preconcentration of the probed molecules. The lowest concentration detectable is 100 pM for a 1-mL solution. Aside from the enhanced sensitivity, the overall performance of this technique does not show any sign of deterioration for highly contaminated protein solutions, and furthermore, no significant peak broadening and band shift were observed in the mass spectra. The promise of this new method for clinical proteomics research is demonstrated with an application to human blood serum.  相似文献   

9.
We show that surface spectral reflectance can be separated from illumination effects in visible through near-infrared (350 nm-1740 nm) hyperspectral data by using only the information in a single radiance spectrum. The separation method exploits the fact that reflectance and illumination spectra typically lie in distinct subspaces. We present a comparison of a linear and a nonlinear algorithm for the separation. These algorithms compute an estimate of the spectral reflectance up to a scaling factor. In addition, we present an iterative method that is used to determine the starting point for the nonlinear algorithm. We also develop a method for selecting the dimension of the reflectance and illumination subspaces that is appropriate for material identification applications. The accuracy of the separation methods is quantified by application to noisy visible through near-infrared spectral data with a database of 107 materials and 3000 illumination spectra. The utility of the separation method for material identification is demonstrated with the same database. The results show that accurate reflectance recovery and material identification is possible by use of visible through near-infrared spectral data over the outdoor environmental conditions represented in this data set.  相似文献   

10.
Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing techniques and selecting different wavelengths is to compare prediction statistics computed with an independent set of data not used to make the actual calibration model. When the errors of reference value are large, no such values are available at all, or only a limited number of samples are available, other methods exist to evaluate the preprocessing method and wavelength selection. In this work we present a new indicator (SE) that only requires blank sample spectra, i.e., spectra of samples that are mixtures of the interfering constituents (everything except the analyte), a pure analyte spectrum, or alternatively, a sample spectrum where the analyte is present. The indicator is based on computing the net analyte signal of the analyte and the total error, i.e., instrumental noise and bias. By comparing the indicator values when different preprocessing techniques and wavelength selections are applied to the spectra, the optimal preprocessing technique and the optimal wavelength selection can be determined without knowledge of reference values, i.e., it minimizes the non-related spectral variation. The SE indicator is compared to two other indicators that also use net analyte signal computations. To demonstrate the feasibility of the SE indicator, two near-infrared spectral data sets from the pharmaceutical industry were used, i.e., diffuse reflectance spectra of powder samples and transmission spectra of tablets. Especially in pharmaceutical spectroscopic applications, it is expected beforehand that the non-related spectral variation is rather large and it is important to remove it. The indicator gave excellent results with respect to wavelength selection and optimal preprocessing. The SE indicator performs better than the two other indicators, and it is also applicable to other situations where the Beer-Lambert law is valid.  相似文献   

11.
Marbach R  Heise HM 《Applied optics》1995,34(4):610-621
An optimized accessory for measuring the diffuse reflectance spectra of human skin tissue in the near-infrared spectral range is presented. The device includes an on-axis ellipsoidal collecting mirror with efficient illumination optics for small sampling areas of bulky body specimens. The optical design is supported by the results of a Monte Carlo simulation study of the reflectance characteristics of skin tissue. Because the results evolved from efforts to measure blood glucose noninvasively, the main emphasis is placed on the long-wavelength near-infrared range where sufficient penetration depth for radiation into tissue is still available. The accessory is applied for in vivo diffuse reflectance measurements.  相似文献   

12.
Raman spectra attest to a high structural perfection of undoped diamond prepared via hydrocarbon decomposition and good quality of boron-doped diamond at doping levels below 0.01 at %. The Fano resonance observed on the first-order Raman scattering peak points to metallic conduction in diamond containing more than 0.1 at % B. The plot of the width of the Raman peak against its frequency shows a jump between 0.04 and 0.1 at % B. Therefore, the transition from semiconducting behavior of diamond to metallic conduction results in an additional contribution to the scattering of phonons, which comes from free carriers. The agreement between the data for boron-doped (0.01–0.1 at %) and neutron-irradiated diamonds lends support to the assumption that, at doping levels above 0.01 at %, boron may be incorporated into diamond interstitially.  相似文献   

13.
An airborne sensor measures the radiance spectrum, which is dependent on the spectral reflectance of the ground material, the orientation of the material surface, and the atmospheric and illumination conditions. We present an algorithm to estimate the surface spectral reflectance, given the sensor radiance spectrum corresponding to a single pixel. The algorithm uses a nonlinear physics-based image formation model. A low-dimensional linear subspace model is used for the reflectance spectra. The solar radiance, sky radiance, and path-scattered radiance are dependent on the environmental conditions and viewing geometry, and this interdependence is considered by using a coupled-subspace model for these spectra. The algorithm uses the Levenberg-Marquardt method to estimate the subspace model parameters. We have applied the algorithm to a large set of synthetic and real data.  相似文献   

14.
The reflectance spectra of chirped fiber Bragg gratings can depend substantially on the direction from which the measurement is taken. The measured difference between forward and backward reflectance spectra measured in a linearly chirped grating was shown to be due to the measured excess loss. Simulation using the popular transfer-matrix model demonstrated that the observed asymmetric behavior could be obtained only when excess loss has an asymmetric spectral shape about the local Bragg wavelengths. Application of cladding mode excess losses to the result of a transfer-matrix model accounted for the experimental observation.  相似文献   

15.
Linear variable optical filter-based ultraviolet microspectrometer   总被引:1,自引:0,他引:1  
An IC-compatible linear variable optical filter (LVOF) for application in the UV spectral range between 310 and 400 nm has been fabricated using resist reflow and an optimized dry-etching. The LVOF is mounted on the top of a commercially available CMOS camera to result in a UV microspectrometer. A special calibration technique has been employed that is based on an initial spectral measurement on a xenon lamp. The image recorded on the camera during calibration is used in a signal processing algorithm to reconstruct the spectrum of the mercury lamp and the calibration data is subsequently used in UV spectral measurements. Experiments on a fabricated LVOF-based microspectrometer with this calibration approach implemented reveal a spectral resolution of 0.5 nm.  相似文献   

16.
Rönnow D  Roos A 《Applied optics》1994,33(34):7918-7927
A model for the calculation of diffuse reflectance and transmittance of a single interference layer on a transparent substrate is applied to pyrolytically deposited tin oxide films on glass. Total as well as diffuse reflectance and transmittance spectra were measured in an integrating sphere, and scattering levels between 0.002 and 0.1 were recorded. The optical constants and the thickness of the films were determined from the total reflectance and transmittance spectra. The wavelength-dependent effective root-mean-square roughness of aluminum-coated tin oxide front surfaces was determined by the application of the scalar scattering theory. Surface roughness values between 5 and 25 nm were obtained. The obtained effective rms roughness values of the air-film interface were used together with the other film parameters to calculate the diffuse reflectance and transmittance spectra of the tin oxide-coated glass substrates. A comparison between calculated and experimental spectra showed good agreement for diffuse reflectance, diffuse transmittance, and total integrated scattering spectra.  相似文献   

17.
Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient, real-time surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. We describe the design and characterization of a combined fluorescence and diffuse reflectance imaging system that uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine the linearity, field of view, spatial and spectral resolution, and wavelength sensitivity of the imaging system. Spectral images were acquired from tissue phantoms, mouse brain in vitro, and human cortex in vivo for functional testing of the system. The spectral imaging system produces measured intensities that are linear with sample emission intensity and integration time and possesses a 1 in. (2.54 cm) field of view for a 7 in. (18 cm) object distance. The spectral resolution is linear with wavelength, and the spatial resolution is pixel-limited. The sensitivity spectra for the imaging system provide a guide for the distribution of total image integration time between wavelengths. Functional tests in vitro demonstrate the capability to spectrally discriminate between brain tissues based on exogenous fluorescence contrast or endogenous tissue composition. In vivo imaging captures adequate fluorescence and diffuse reflectance intensities within a clinically viable 2 min imaging time frame and demonstrates the importance of hemostasis to acquired signal strengths and imaging speed.  相似文献   

18.
The results of studies of infrared reflection-absorption spectra of metal-effect coatings are presented in this paper. Such coatings consist of metallic flakes that are dispersed in a polymer binder. The spectra show two distinct phenomena. One is due to the polymer matrix. The other is due to metallic flakes that are dispersed inside the layer. The polymer binder causes narrow spectral lines that give a thickness-dependent intensity and position. Metallic flakes change the average baseline of this spectrum over the entire infrared spectral region. This particular effect was evaluated using a simple rough-surface model. Two parameters of the model, the root-mean-square roughness and the correlation length of the rough surface, described the reflection of the partial beams on the metal flake surfaces and scattering on flakes boundaries. The other two parameters are the specular reflectance and the diffuse reflectance of the plane untextured interface between the polymer matrix and the metal flake surface. Various metal-effect coatings within the same polymer binder were analyzed. The effect of each metal flake dispersion was evaluated by the parameters within the rough-surface model. The results were analyzed in terms of the size and the loadings of flakes that were used in the coatings.  相似文献   

19.
Shah HS  Desai PR  Roy MS 《Applied optics》1997,36(15):3538-3546
A comparative study of statistical particle model theory of diffuse reflectance has been made. Theories have been applied to six particulate samples having different optical characteristics and average particle sizes that vary from 42 to 106 mum. We made an overall assessment of each theoretical model by determining the CIELAB color difference using experimentally measured and theoretically predicted diffuse reflectance spectra in the visible spectral range. We discuss the performance ratings of the models of other researchers and discovered numerous typographical errors in Fresnel reflection coefficient expressions. We provide the correct versions for these expressions.  相似文献   

20.
Cadmium oxide nanoparticles synthesised by a simple sol–gel synthesis method showed luminescence properties in the visible region of the electromagnetic spectrum. Both green and blue emissions were observed in photoluminescence spectra. We have investigated luminescence properties by changing the synthesis conditions. An enhanced luminescence of CdO nanoparticles was realised when these particles were annealed at different temperatures. Cadmium interstitial vacancies and oxygen vacancies played an important role in luminescence properties. X-ray diffraction confirmed annealing-induced changes in morphological properties. A good correlation between all the experimental results was obtained. Optical properties were investigated by diffuse reflectance spectra and photoluminescence spectra. Structural properties were investigated by high-resolution transmission electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号