首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Two configurations, (i) a double‐cell‐gap twisted nematic (DTN) liquid‐crystal display (LCD) and (ii) a single‐cell‐gap twisted‐nematic (TN) liquid‐crystal display (LCD) using a twisted LC retarder, were optimized for transflective liquid‐crystal displays. For the DTN configuration, both the single‐cell‐gap approach and the double‐cell‐gap approach were considered. The optimized configurations exhibit a high contrast ratio, wide viewing angles, and achromatic (black/white) switching in both the transmissive and reflective modes. They are easy to fabricate and also possess a perfect dark state. Both are suitable for high‐quality transflective TFT‐LCDs.  相似文献   

2.
Abstract— Wide‐view (WV) films for TN‐mode LCDs, which optimize the optical parameters of the polymerized discotic material (PDM) layer and cellulose triacetate (CTA) have been developed. The development concept of the WV film and realization of its concept in the past and for the future will be reviewed. In particular, the discotic molecular alignment control enabled the improvement of the contrast ratio at oblique viewing angles of TN‐mode LCDs. In addition, color shifts at oblique angles are important for large‐screen TN‐mode LCD monitors and LCD‐TV sets. To improve the color‐shift problem, new technologies have been developed.  相似文献   

3.
Abstract— The application of the LCD modeling and optimization system, LCD DESIGN, for the design and development of new advanced LCD configurations was demonstrated. The software includes a powerful optimization module that allows for spectral and angular averaging, thus enabling the production of LCDs with wide viewing angles, achromatic (black/white) switching, and fast response time. We describe the basic principles of the software development and present several examples of LCD optimization in various electro‐optical modes. A brief review of our results of LCD optimization and modeling using LCD DESIGN software is also given.  相似文献   

4.
Abstract— In this paper, many popular methods to study transflective liquid‐crystal‐displays (LCDs) have been discussed, and several new transflective LCD configurations with a single‐cell gap have been proposed. The traditional double‐cell‐gap method gives the best match of the transmittance/reflectance voltage curve (TVC/RVC) and also the widest viewing angle, but also brings the highest fabrication complexity. The single‐cell‐gap transflective LCD is much easier to fabricate and also shows a good match of TVC/RVC. A new methodology has been shown to find optimal configurations for single‐cell‐gap transflective LCDs. New configurations using multimode in a single pixel include twisted nematic (TN) optically compensated bend (OCB), TN electrically controlled birefringence (ECB), and TN low‐twisted nematic (LTN). TN and hybrid‐aligned nematic (HAN) modes have been investigated for single‐mode transflective LCDs. The results exhibit high contrast ratio, a good match of TVC/RVC, as well as wide viewing angle.  相似文献   

5.
Abstract— A thin‐crystalline‐film (TCF) polarizer has been developed which can be used internally in liquid‐crystal‐display cells. Based on this material, a manufacturing process has been developed for the fabrication of monochrome LCDs with internal polarizers. A new TCF polarizer material and coating equipment, developed to realize a high‐performance color TFT‐LCD, are discussed.  相似文献   

6.
We have developed a new microstructure film for wide viewing liquid crystal displays (LCDs). By attaching it to the surface of a conventional LCD, the viewing angle characteristics of LCD has drastically improved without causing a blur of the frontal image and a decrease in the contrast ratio under bright ambient light conditions. This film can be applied to various LC modes including twisted nematic and multidomain vertical alignment by changing its internal micrometer‐size 3D structure. Further, this film can be mass‐produced efficiently by self alignment roll‐to‐roll process.  相似文献   

7.
Abstract— An adjustable‐color‐gamut dual‐gap RGBW transflective liquid‐crystal display that uses a four‐color manufacturing process and a color‐processing algorithm to achieve the appropriate color performance in both the transmissive and reflective modes is presented. Based on superior‐color‐transformation units, the total brightness and color gamut can be modified under different ambience. The highest NTSC color gamut in the reflective mode (reflectance, 4.4%) that has been fabricated successfully for a RGBW 1.5‐in. dual‐gap panel is 23% with a 7%, 17%, and 40% NTSC color gamut in the transmissive mode by using different algorithms. Compared to a typical RGB panel, it not only provides flexibility for any environment but also satisfies a variety of personal requirements. Based on personal preference, users have more choices to adjust the LCD settings such as color saturation, brightness, etc. The smart RGBW TRLCD will definitely become the developing trend towards sunlight‐readable LCDs in the near future.  相似文献   

8.
Abstract— In‐cell retarders can be a major breakthrough for mobile LCDs. When a patterned in‐cell retarder replaces the external retarders on transflective LCDs, brighter and thinner transflective LCDs with lower power consumption and wider viewing angle can be obtained. Additionally, when in‐cell retarders are applied in reflective LCDs, the thickness of the LCD is considerably reduced without affecting the optical performance of the reflective LCD. This paper presents the technology needed to make in‐cell retarders and the performance of reflective and transflective LCDs with in‐cell retarders.  相似文献   

9.
Abstract— Cholesteric liquid crystals automatically form one‐dimensional photonic crystals. For a photonic crystal in which light‐emitting moieties are embedded, unique properties such as microcavity effects and simultaneous light emission and light reflection can be expected. Three primary‐color photonic‐crystal films were prepared based on cholesteric liquid crystal in which fluorescent dye is incorporated. Microcavity effects, i.e., emission enhancement and spectrum narrowing, were observed. Two types of demonstration liquid‐crystal displays (LCDs) were fabricated using the prepared photonic‐crystal films in a backlight system. One is an area‐color LCD in which a single photonic‐crystal layer is used for each color pixel and the other is a full‐color TFT‐LCD in which three stacked photonic‐crystal layers are used as light‐conversion layers. The area‐color LCD was excited by using 365‐nm UV light, and the full‐color TFT‐LCD was excited by using 470‐nm blue LED light. Because of the photonic crystal's unique features that allow it to work as light‐emitting and light‐reflecting layers simultaneously, both LCDs demonstrate clear readable images even under strong ambient light, such as direct‐sunlight conditions, under which conventional displays including LCDs and OLED displays cannot demonstrate clear images. In particular, an area‐color LCD, which eliminated color filters, gives clear images under bright ambient light conditions even without backlight illumination. This fact suggests that a backlight system using novel photonic‐crystal layers will be suitable for energy‐efficient LCDs (e2‐LCDs), especially for displays designed for outdoor usage.  相似文献   

10.
We have successfully developed a quarter‐wave retardation film (QWF) for wide viewing angle 3D liquid crystal displays (3D‐LCDs) that provides high luminance, low crosstalk, low color change, and low head‐tilt‐angle dependency. It was found that the out‐of‐plane retardation (Rth) of the QWF in the LCD needs to be close to 0 nm in order to improve the 3D display properties at an off‐axis position and that the in‐plane retardation (Re) needs to be adjusted from 120 to 130 nm to achieve low color change with head tilting. We adopted a coating process for making our QWF because of its potential for retardation control. 3D‐LCDs with this QWF whose Rth was nearly zero had high performance and allowed off‐axis other than on‐axis.  相似文献   

11.
Abstract— Optical flicker is one of the artifacts of color STN‐LCDs and is related to the electrical asymmetry in LCD panels. The transient‐current asymmetry was observed to have a linear correlation with the internal DC offset of LC panels. The asymmetric cell structure of LC panels with a single topcoat layer leads to the asymmetry. The interface effect between different layers in an LC panel plays an important role in this phenomenon. Based on experiments, an improved RC network model was introduced to describe the mechanism.  相似文献   

12.
Abstract— Super IPS (S‐IPS) technology has intrinsic advantages in several aspects required for TV applications. Particularly, the wide‐viewing‐angle property and fast gray‐to‐gray response time of S‐IPS LCDs are both necessary requirements for family and individual use for LCD TVs. Given these benefits and other advantages S‐IPS provides, LG.Philips LCD has developed high‐performance S‐IPS LCDs for TV, which have now become competitive with plasma‐display panels (PDPs), in addition to other modes of LCD TVs as well as CRTs. This article will discuss why S‐IPS technology is the leading choice for LCD‐TV applications.  相似文献   

13.
Abstract— In order to improve the reflective contrast ratio of transflective IPS‐LCDs, a novel pixel design for a normally white reflective IPS has been proposed. In this design, the large‐inter‐electrode‐spacing layout using a novel driving method and a double‐layered electrode have effectively reduced the light leakage. By applying these two technologies, a transflective IPS‐LCD has been successfully demonstrated with a high contrast ratio (15:1) in the reflective mode and a wide‐viewing‐angle characteristic in the transmissive mode.  相似文献   

14.
Plastic liquid crystal displays (LCDs) termed sheet LCDs with transparent polyimide (PI) substrates were constructed. There is a lot of potential to expand the use of these LCDs in LCD applications. Herein, we investigated a structure for sheet LCDs such as high‐density main post spacers (PSs) and PI substrates with the aid of a barrier layer to control the residual stress and protect the liquid crystal from moisture. Drawing on this, we propose an ultra‐narrow border LCD that makes of the developed sheet LCDs. The most significant improvement is that the four borders of the LCD can be folded to wrap the backlight unit. This LCD was based on various new techniques, including the use of plastic substrates, processing of polarizer films, control of the neutral surface of a bending component based on the sealant width, and the use of a cover glass with a lens effect. We believe that these novel LCDs will be useful in numerous new applications.  相似文献   

15.
Abstract— A methodology and associated software modules for calibration, characterization, and profiling of color LCDs for color‐critical applications in medical imaging is described. Supporting analyses reveal very high color‐reproduction accuracy as determined by CIE DE2000 color differences for 21 0 test colors uniformly distributed in CIE Lab color space. The impact of the LCD tone‐reproduction curve on color‐reproduction accuracy is compared for two tone‐reproduction curves of special interest in medical imaging: the DICOM gray‐scale standard display function and the CIE L* standard lightness function. The initial results from a psychophysical investigation of the diagnostic performance of trained pathologists viewing “virtual” breast biopsy slides are reported and the diagnostic performance achieved with calibrated, color‐managed LCDs with uncalibrated LCDs without the benefits of color management is compared.  相似文献   

16.
Abstract— In‐plane‐switching LCD (IPS‐LCD) technologies originally developed for LCD monitors and TV applications are applied to mobile applications. Advantages of the IPS mode over other optical modes for mobile applications are quantitatively clarified. The panel achieves stable color reproduction and chromaticity in the viewing‐angle range for mobile displays. Superiority of the IPS mode over other optical modes is discussed also from the viewpoints of stability in chromaticity during the brightness change and the driving power consumption. A transflective IPS mode with good performance is accomplished by the use of a proper optical design. A new structure, IPS‐Pro, which enables sunlight readability by increasing the transmittance, i.e., the brightness of the panel, without additional cost and power consumption in contrast to additional fabrication processes required to fabricate the transflective mode is realized. Furthermore, to improve the users' convenience, an automatic luminance control system and a controllable viewing‐angle device are developed. The panels developed fulfill the market requirements of increasing the function and performance variations and will be the most appropriate ones to be applied to mobile appliances, such as cellular phones, digital still cameras, music players, GPS, mobile TV sets, etc.  相似文献   

17.
Abstract— Cyclic block copolymers (CBCs) are a new class of optical polymers made by fully hydrogenating block copolymers of styrene and conjugated diene. This class of materials has excellent optical transparency, photostability, and good thermal resistance. By changing the copolymer composition and the resulting block‐copolymer morphology, a unique set of birefringence properties can be achieved. The focus of this work was to study various sources of birefringence in block copolymers using a series of model CBC materials. One particularly interesting finding relates to the development of an ultra‐low‐phase‐retardation CBC film. Unlike the conventional approach of using an additive or blend, a CBC film prepared by melt extrusion can readily achieve near‐zero retardation in both the film plane and thickness direction. This nearly isotropic CBC film is useful as a polarizer protection film in flat‐panel displays. When used as the inner protective layer of a polarizer, CBC film helps to reduce the color shift of IPS‐LCDs at oblique angles and offer a wider viewing angle.  相似文献   

18.
Abstract— A new optical compensation film refered to as WV‐EA film for TN‐mode TFT‐LCDs has been developed, resulting in higher contrast ratio, wider‐viewing‐angle characteristics, and improved color shift than their predecessors, especially in the horizontal direction. These features of the new WV film were achieved as a result of haze reduction and optimizing the optical characteristics of the polymerized discotic material layer and TAC film. These features are suitable for large‐sized and wide‐aspect‐ratio LCD monitors and TVs.  相似文献   

19.
Abstract— Reflective color LCDs with double polarizers have been developed by means of optimizing liquid-crystal modes, aperture ratio, color-filter properties, thickness of the glass substrate, polarizers, reflectors, etc. These LCDs are sufficiently bright, display many colors, have good hue, and are light weight with thin outline and low power consumption. Since they have double polarizers, a very high contrast ratio can be obtained. Therefore, they are superior in text character displays. Moreover, transflective color LCDs have been developed without visible deterioration of reflective displays by adoption of a reflective polarizer and backlight system in place of a lower polarizer and reflector.  相似文献   

20.
We have mass production on one kind of liquid crystal display (LCD) device with hybrid viewing‐angle (HVA), which can be switched between the wide viewing‐angle (WVA) and narrow viewing‐angle (NVA) by one button. This device adopts the single cell design that with lower cost, and utilizes the optical properties of electrically tilted LC to achieve the function of NVA display. An issue has received less attention in the past and been indeed found in the production process. It is that the off‐axis color shift will appear in NVA mode. We put forward one method to improve this issue here, which is combined with the concepts of Gray Frame Insertion (GFI) and Impulse‐type driving. By switching the voltage between two different γ values, the color shift will be perfected on the produce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号