首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent years, silane materials, because of their environmental friendly nature and ease of application have been attended as an alternative for chromate conversion coatings. Different materials were searched for improvement of the efficiency of silane formulation. In this research, pretreatment of carbon steel substrates was carried out using γ-glycidoxypropyl-trimethoxysilane (γ-GPS) as functionalized silane. Cerium nitrate as a corrosion inhibitor material was introduced into the silane material and epoxy resin was applied on the pretreated steel substrates. Effects of the pretreatment on electrochemical properties, cathodic disbondment, dry and wet adhesion strength, and surface morphology of resultant epoxy coating were investigated. Results showed that pretreatment of steel substrate with γ-glycidoxypropyl-trimethoxysilane (γ-GPS) doped with cerium nitrate leads to improvement of cathodic disbondment and also dry and wet adhesion of epoxy coating. Furthermore, this type of pretreatment reduced the disruption of interfacial bonds at the binder/substrate interface. Addition of 2?wt% cerium nitrate into the silane formulation led to the maximum efficiency of resultant coating.  相似文献   

2.
Adhesion to metallic substrates can be improved through the addition of polar functional groups, which bond with surface groups on the metal substrate. Additionally, polar interactions have been shown to increase adhesive strength even in wet environments (such as in the case for cathodic protection). A polymer blend is proposed as a coating material to provide adequate protection against the diffusion of moisture and air to the metallic surface along with superior adhesion even in the presence of wet and corrosive environments to resist cathodic disbondment. A reactive ethylene terpolymer (RET) of ethylene/n-butyl acrylate/glycidyl methacrylate (E/nBA/GMA) was compounded with HDPE to develop a potential coating material. The HDPE component offers high chemical and moisture resistance to permeation, while the RET component provides the material with high polarity and reactivity, which enhances adhesion to the substrates to be coated. The introduction of the reactive ethylene terpolymer decreases the magnitude of cathodic disbondment area of polyethylene coatings. After applying a cathodic potential to the coating substrate, the adhesive strength was observed to remain the same for silane-pretreated steel dollies. Without silane pretreatment, post-CD adhesive loss resembles that of the open circuit “wet” condition. EDAX data in conjunction with oxygen and water vapor transmission rates suggest an initial stage of disbondment where interfacial oxide is dissolved resulting in the delamination of coating around the initial defect. This initial disbondment zone acts like a moving crack tip creating larger areas of disbondment where interfacial bonds are degraded by the ingress of moisture and ions along the interface.  相似文献   

3.
Adhesion to metallic substrates can be improved through the addition of polar functional groups, which bond with surface groups on the metal substrate. Additionally, polar interactions have been shown to increase adhesive strength even in wet environments (such as in the case for cathodic protection). A polymer blend is proposed as a coating material to provide adequate protection against the diffusion of moisture and air to the metallic surface along with superior adhesion even in the presence of wet and corrosive environments to resist cathodic disbondment. A reactive ethylene terpolymer (RET) of ethylene/n-butyl acrylate/glycidyl methacrylate (E/nBA/GMA) was compounded with HDPE to develop a potential coating material. The HDPE component offers high chemical and moisture resistance to permeation, while the RET component provides the material with high polarity and reactivity, which enhances adhesion to the substrates to be coated. The introduction of the reactive ethylene terpolymer decreases the magnitude of cathodic disbondment area of polyethylene coatings. After applying a cathodic potential to the coating substrate, the adhesive strength was observed to remain the same for silane-pretreated steel dollies. Without silane pretreatment, post-CD adhesive loss resembles that of the open circuit “wet” condition. EDAX data in conjunction with oxygen and water vapor transmission rates suggest an initial stage of disbondment where interfacial oxide is dissolved resulting in the delamination of coating around the initial defect. This initial disbondment zone acts like a moving crack tip creating larger areas of disbondment where interfacial bonds are degraded by the ingress of moisture and ions along the interface.  相似文献   

4.
Failure of adhesion of organic coating (paints) to steel and other metallic substrates is one of the key mechanisms for local coating failure and for consequent restriction of coating lifetime. This study thus focuses on modification to the chemistry of the metal interface in order to promote enhanced (dry and wet) coating adhesion. The work uses an appropriate bi-functional amino alkyl phosphonate to provide the desired interfacial properties. The study uses X-ray photoelectron spectroscopy and water contact angle measurement to examine changes in the interfacial surface chemistry and electrochemical impedance spectroscopy and cathodic disbonding to determine improvements to the anti-corrosion performance. Choosing 4-amino-butyl-phosphonic acid as the surface modifier a significant influence on its efficiency as an adhesion promoter was observed as a function of pH. Thus, when the amino group was protonated at a pH of 5.3, the molecule demonstrated attachment to carbon steel at both ends with no significant improvement in performance. However at pH 8 the molecule demonstrated greatly improved surface packing density with the amino group outwards from the surface in the preferred orientation. In this condition, an epoxy coating demonstrated substantial resistance to interfacial hydrolysis with overall improved adhesion and reduced cathodic disbondment rate.  相似文献   

5.
The methodical approach and the cell to study electrochemical processes occurring during cathodic disbondment of a polymer coating are worked out. They permit one to investigate the role of each process separately when supervising the metal substrate potential, electrolyte and polymer coating composition at a metal/polymer/electrolyte interface. The cathodic disbondment of ethylene-vinyl acetate copolymer, polyisoprene and poly(vinyl chloride) coatings are studied. It is found that the cathodic disbondment rate for ethylene-vinyl acetate copolymer coatings depends on double layer parameters at the interface. These parameters are determined by specific volume charge of hydrated cations of the electrolyte, potential of the substrate, the presence of oxygen, surface active substances, etc. Based on the data of IR spectroscopy in internal reflection applied to disbonded films, it is established that during the cathodic disbondment an electron transfer to polymer functional groups, as well as an attacking of the adhesion bonds by active intermediates of oxygen reduction, occurs resulting in an electrochemical degradation of the polymer and an adhesion loss. It is shown that the electrochemical transformations at the steel/poly(vinyl chloride) interface can lead to the appearance of new adhesion bonds, increasing adhesion strength and decelerating the cathodic disbondment.  相似文献   

6.
This article reports on a comparative study on the corrosion resistance of low-carbon steel substrates pretreated with different silane solutions and painted. The pure silanes used to pretreat the steel panels were 3-aminopropyltriethoxysilane (γ-APS), 3-glycidoxypropyltrimethoxysilane (γ-GPS), and bis(3-triethoxysilylpropyl)amine. The study also considered other silane solutions with ureido, amino, and epoxy organofunctional groups, and two bis-functional silanes: bis(γ-trimethoxysilylpropyl)amine (BAS) and 1,2-bis(triethoxysilyl)ethane (BTSE). A conventional phosphate-type pretreatment was also applied for reference purposes. The pretreated panels were then finished with an alkyd/polyester aminoplast base paint. As a branch test, an acrylic/urethane paint was also applied. Different tests were conducted to evaluate the anticorrosive ability of the different silane/paint systems: outdoor exposure in an atmosphere of moderate aggressivity; accelerated corrosion test (salt fog test); and electrochemical impedance spectroscopy (EIS). The results show that the steel pretreated with certain silanes, especially γ-APS, yields similar results to steel subjected to conventional phosphate pretreatment.  相似文献   

7.
The strength and durability in wet environment of aluminum/epoxy/aluminum joints are investigated as a function of structural changes of γ aminopropyltriethoxy silane (γ-APS) primer at the interface. Both dry and wet strengths exhibit strong dependencies on both the thickness and the extent of drying of γ-APS prior to joint formation. Generally, dry strength decreases with increasing thickness of γ-APS primer, and increases with dehydration of γ-APS at any given thickness. Strength retention of the joints after exposure to water at 55°C also improves dramatically when the adsorbed γ-APS is extensively dried. These results are analogous to earlier observations with α-Al2O3/polyethylene joint system. In aluminum joints, porous oxide substrate facilitates the mechanical interlocking mechanism, and its interplay with both the thickness and the extent of cure of γ-APS is analyzed by characterizing the fractured surfaces using scanning electron microscopy (SEM) electron spectroscopy for chemical analysis (ESCA).  相似文献   

8.
Cathodic delamination is one of the major modes of failure for organic coatings immersed in seawater and refers to the weakening or loss of adhesion between the coating and the substrate. The diminished adhesion is the result of electrochemical reactions occurring at the coating–steel interface, where solid iron is oxidized to ferrous ions and oxygen is reduced to hydroxyl ions. In this work, the effects of various parameters on cathodic delamination have been investigated. The parameters are: permeability of the coating, concentration of dissolved oxygen and cations, polarization potential, type of binder, degree of curing, and pigment loading, shape and type. The results show that cathodic delamination increases with increasing concentration of cations up to the point where the concentration of dissolved oxygen becomes insufficient to maintain the corrosion rate. The rate of cathodic delamination is inversely proportional to the magnitude of polarization potential when ions can penetrate the coating, while cathodic polarization does not affect cathodic delamination when the ionic transport is restricted to the coating–steel interface. Increasing the pigment loading or partial replacement of spherical pigments with flake-shaped micaceous iron oxide or aluminium pigments reduces the rate of cathodic delamination. Finally, binders with an increasing amount of secondary hydroxyl groups in the polymer backbone reduce the rate of cathodic delamination while increasing the initial molar ratio of amide to epoxide increases cathodic delamination.  相似文献   

9.
The practical adhesion of maleic anhydride grafted polyethylene (MAH-PE) to galvanised steel was studied using 3-point flexure tests, before and after hydrothermal ageing. Before bonding, the electro-galvanised steel was treated with γ-aminopropyltriethoxysilane (γ-APS). The influence of the silane coating thickness and deposition pH on the practical adhesion of MAH-PE to steel was investigated. FT-IR spectroscopy and microscopy enabled to gain understanding of the interphase formation between the silane and the metal substrate. It was found that, at the natural pH of the γ-APS, Zn ions dissolved in the silane coating with subsequent formation of crystals. This interphase could be held responsible for the better durability of the bonds than for silane coatings applied at quasi-neutral pH, for which dissolution of Zn ions was not observed.  相似文献   

10.
In this study, 3-glycidoxypropiltrimethoxysilane was used as an adhesion promoter to enhance the adhesion strength of epoxy coating on an aluminum (Al) substrate. Silane layer drying temperature was investigated as a factor that has an influence on the adhesion of polymeric coating on metal substrate and also on its performance in wet and corrosive environments. FTIR tests were carried out to study Al/silane interactions. Drying the silane layer at high temperatures formed a condensed siloxane layer that improved the bonding strength as well as the performance of the protective coating in corrosive environments. The highest dry and wet pull-off strengths were obtained at drying temperatures of 100 and 125°C, respectively.  相似文献   

11.
An aminolysis mechanism is proposed to explain the enhanced adhesion between the interface of a bisphenol-A polycarbonate substrate with an alkoxysilane containing sol-gel coating when 3-aminopropyltriethoxysilane (3-APS) is used as a primer. Both a model solution study and surface analyses of polycarbonate substrates exposed to 3-APS indicate that the latter reacts with the carbonate groups in the polycarbonate chain by forming urethane linkages. With 3-APS bonded to the substrate, a sol-gel coating can be chemically bonded to the substrate through hydrolysis of alkoxysilane groups and subsequent silanol condensation. Consequently, enhanced adhesion between the sol-gel coating and the substrate is achieved.  相似文献   

12.
An aminolysis mechanism is proposed to explain the enhanced adhesion between the interface of a bisphenol-A polycarbonate substrate with an alkoxysilane containing sol-gel coating when 3-aminopropyltriethoxysilane (3-APS) is used as a primer. Both a model solution study and surface analyses of polycarbonate substrates exposed to 3-APS indicate that the latter reacts with the carbonate groups in the polycarbonate chain by forming urethane linkages. With 3-APS bonded to the substrate, a sol-gel coating can be chemically bonded to the substrate through hydrolysis of alkoxysilane groups and subsequent silanol condensation. Consequently, enhanced adhesion between the sol-gel coating and the substrate is achieved.  相似文献   

13.
X-ray photoelectron spectroscopy (XPS) has been used to determine the mechanism responsible for debonding of an epoxy/polyamide coating from steel during cathodic delamination in 3.5% aqueous NaCl solutions. Coating failure always occurred near the interface between the coating and the oxide. The nitrogen content of the free surface of the prepared coatings was about 10%. However, the nitrogen content of the free surface dropped to only 5% after exposure to 1 N NaOH for four weeks and that of the coating failure surface after cathodic delamination was only about 2%, implying that the failure involved degradation of the polyamide curing agent by hydroxide ions formed at the steel surface by reduction of oxygen. That conclusion was supported by results obtained from curve fitting of C(1s) and O(1s) spectra. The intensity of components in the C(1s) spectra due to C—N and C≡O bonds in amide functional groups decreased significantly after coatings were exposed to NaOH or subjected to cathodic delamination. Small amounts of organic materials characteristic of the coating were observed on the substrate failure surface, perhaps indicating that the failure was cohesive within the coating but very close to the interface or that some products from degradation of the curing agent precipitated on the substrate. Use of silane coupling agents to retard cathodic delamination was also investigated. Coupling agents were added directly to the coating or applied to the substrate as a primer before application of the coating. Significant reduction in the rate of cathodic delamination was seen only when the silane coupling agent was applied to the substrate and cured at elevated temperatures before the epoxy/polyamide coating was applied.  相似文献   

14.
X-ray photoelectron spectroscopy (XPS) has been used to determine the mechanism responsible for debonding of an epoxy/polyamide coating from steel during cathodic delamination in 3.5% aqueous NaCl solutions. Coating failure always occurred near the interface between the coating and the oxide. The nitrogen content of the free surface of the prepared coatings was about 10%. However, the nitrogen content of the free surface dropped to only 5% after exposure to 1 N NaOH for four weeks and that of the coating failure surface after cathodic delamination was only about 2%, implying that the failure involved degradation of the polyamide curing agent by hydroxide ions formed at the steel surface by reduction of oxygen. That conclusion was supported by results obtained from curve fitting of C(1s) and O(1s) spectra. The intensity of components in the C(1s) spectra due to C—N and C≡O bonds in amide functional groups decreased significantly after coatings were exposed to NaOH or subjected to cathodic delamination. Small amounts of organic materials characteristic of the coating were observed on the substrate failure surface, perhaps indicating that the failure was cohesive within the coating but very close to the interface or that some products from degradation of the curing agent precipitated on the substrate. Use of silane coupling agents to retard cathodic delamination was also investigated. Coupling agents were added directly to the coating or applied to the substrate as a primer before application of the coating. Significant reduction in the rate of cathodic delamination was seen only when the silane coupling agent was applied to the substrate and cured at elevated temperatures before the epoxy/polyamide coating was applied.  相似文献   

15.
The corrosion behaviour of glassflake epoxy coatings on steel substrate with and without an adhesion promoter was examined by electrochemical impedance spectroscopy. The impedance data show that an improvement in the protective behaviour of the coating is connected with a large increase in the resistance in the pores of the coating. These effects are probably due to an improvement in the initial, wet and recovered adhesion between glassflakes and epoxy binder. The results of pull-off adhesion tests are presented.  相似文献   

16.
张倩  左禹  唐聿明 《化工学报》2014,65(10):4049-4055
在LY12铝合金表面制备了一层硅烷膜,研究了硅烷膜对铝合金表面富镁铝环氧涂层性能的影响。硅烷处理后,形成了硅烷膜与基体之间Si-O-Al共价键以及硅烷膜内部的Si-O-Si 结构,而硅烷膜中未成键的硅醇基团-OH以及R-的环氧基团与涂层中的有机组分反应成键或通过范德华力发生交联互穿,使铝合金基体与环氧镁铝复合涂层之间形成更加牢固的交联互穿网络结构(IPN),镁铝复合涂层在LY12铝合金基体上的附着力明显提高。马丘测试和电化学阻抗测试结果表明,硅烷处理改善了LY12铝合金表面镁铝复合涂层的整体屏蔽性能,使涂层体系的保护效果显著提高,保护时间延长。  相似文献   

17.
High performance composite coating (HPCC) provides a potential, excellent coating alternative for integrity maintenance of pipelines in the northern area. In this work, the physical, chemical and mechanical properties of HPCC were investigated to determine the microstructure, water permeability, cathodic disbondment resistance, electrochemical impedance, adhesion and impact resistance of the coating. It is shown that the addition of polyethylene layer significantly improves the compactness of the coating and enhances its resistance to water and chemical penetration, resulting in a small water vapor transmission rate and permeance. There is a quite small cathodic disbondment of HPCC under the standard test. The impedance characteristic measured on HPCC-coated steel shows a capillary behavior, indicating an effective protection over the underlying steel from corrosion. The adhesion of HPCC to the substrate ranks top one according to both ASTM and CSA standards. The impact energy of HPCC is 9.7 J at 22 °C, and about 10.2 J around 0 °C.  相似文献   

18.
The cathodic delamination of a commercial magnesium silicate and titanium dioxide pigmented epoxy coating on abrasive cleaned cold rolled steel has been investigated. The rate of delamination was found to depend on interfacial transport from the artificial defect to the delamination front and thereby the substrate topography, whereas the coating thickness had little influence. The presence of a significant potential gradient between the anode and the cathode and the dependency of the delamination rate on the tortuosity of the steel surface suggests that cathodic delamination is controlled by migration of cations from the defect to the delamination front. This means that abrasive blasting, to some extent, can be applied to control and minimize the observed rate of cathodic delamination. The lifetime of the species causing disbondment suggested that sodium hydroxide or potassium hydroxide and not peroxide species or radicals are the causative agents at free corrosion potential (i.e. without impressed current).  相似文献   

19.
Epoxy resin was modified by a silane monomer, γ-aminopropyltrimethoxy silane (γ-APS), and was used as the protective coatings for LY12 aluminum alloys. The aim of the modification is to reduce the water uptake of polymeric coatings. The water absorption of coatings was measured by coating capacitance method in 3.5 wt.% NaCl aqueous solution. The result indicates that water uptake of epoxy coatings modified with 1.0 wt.% γ-APS decreases compared with pure epoxy coatings, whereas larger amounts of sliane result in the deterioration in performance against water permeation, due to the excessive consumption of epoxide group in epoxy resin by amino-group in silane agent, thus reduce the cross-linking of epxoy coating as a result of presence of excessive curing agent (polyamide). Tg of silane-modified coatings increases slightly after immersion, extremely contrasting with that of pure epoxy coating, which was observed to decrease significantly after water permeation. The formation of Si–O–Si structure resulting from the hydrolysis and condensation of silane components during the immersion in aqueous media may be a reasonable explanation for the abnormal change in Tg of silane-modified coatings. In addition, all silane-modified coatings display better protection performance, which is characterized by higher charge transfer resistances (Rct) and lower double layer capacitance (Cdl) at substrate/electrolyte interface.  相似文献   

20.
The impact of silane on the hygrothermal stability of epoxy coatings was investigated by specular neutron reflectivity (NR). By comparing the hygrothermal degradation behavior of neat novolac epoxy coating and corresponding bis[3-(triethoxysilyl)propyl]tetrasulfide-laced epoxy coating, the role of silane was elucidated. Accelerated aging was achieved by exposing the samples to 80°C liquid water. For the pure epoxy coating, degradation occurs at the coating–substrate interface, which makes the coating vulnerable to adhesion failure. For epoxy–silane coating the addition of silane imparts resistance to the interfacial degradation observed in the neat epoxy coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号