首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the sliding mode control of uncertain nonlinear systems against actuator faults and external disturbances based on delta operator approach. The nonlinearity, actuator fault, and external disturbance are considered in this study, and the bounds of Euclidean norms of the nonlinearity and the specific lower and upper bounds of the actuator faults and the disturbances are unknown knowledge. Our attention is mainly focused on designing a sliding mode fault‐tolerant controller to compensate the effects from the nonlinearity, unknown actuator fault, and external disturbance. Based on Lyapunov stability theory, a novel‐adaptive fault‐tolerant sliding mode control law is deigned such that the resulting closed loop delta operator system is finite‐time convergence and the actuator faults can be tolerated, simultaneously. Finally, simulation results are provided to verify the effectiveness of the proposed control design scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
针对船舶运动系统中固有的非线性、模型不确定性和风、浪、流等的干扰.提出了自适应模糊滑模控制(AFSMC)策略解决船舶的航向控制问题.通过采用模糊逻辑系统逼近系统未知函数,将滑模控制技术与自适应模糊控制技术相结合,设计了船舶航向AFSMC控制器.在滑模边界层内应用PI (proportional-integral)控制代替滑模控制中的切换项,削弱了滑模控制带来的抖振现象.借助李亚普诺夫函数证明了船舶运动系统中的信号都一致有界并利用Barbalat引理证明了跟踪误差渐近收敛到零.在参数摄动和外界干扰情况下进行了航向保持与改变仿真试验,采用AFSMC控制器得到了与无摄动和无干扰情况下相似的输出响应.实验结果表明,所提控制器能有效地处理系统不确定性和外界干扰,控制性能良好,具有很强的鲁棒性.  相似文献   

3.
An indirect approach to adaptive interval type-2 fuzzy sliding mode control is proposed for the stable synchronization of two different chaotic nonlinear systems with different initial conditions under the presence of uncertainties involving process noises and external disturbances. The indirect model-based approach to adaptation is promoted here as a more suitable strategy for the fast changes that occurs in chaotic systems. In other words, the usual direct adaptive strategies may be too slow to respond to the inherently fast changing dynamics of chaotic systems. Using Lyapunov analysis, the sliding mode approach illustrates the asymptotic convergence of synchronization error to zero as well as good robustness against external disturbances. The interval type-2 structure aims to remedy the undesirable chattering phenomenon that is common in most conventional sliding mode control applications. It also provides a more effective equivalent model in the indirect approach, which leads to improved handling of the chaotic variations and uncertainties. Two numerical pairs of chaotic systems, i.e. the Lorenz and Chen’s systems and the Rössler system and modified Chua’s circuit are considered. In particular, in comparison with its type-1 fuzzy counterpart, the control effort is reduced by an average of 26.25% and 17.4% for the synchronization of the two corresponding systems, respectively. Furthermore, the integral of squared error is also improved by an average of 27.2% and 25.33%. This is while convergence time is reduced to less than 0.5 s and 1.5 s.  相似文献   

4.
A novel direct adaptive interval type-2 fuzzy neural network (FNN) controller in which linguistic fuzzy control rules can be directly incorporated into the controller is developed to synchronize chaotic systems with training data corrupted by noise or rule uncertainties involving external disturbances, in this paper. By incorporating direct adaptive interval type-2 FNN control scheme and sliding mode approach, two non-identical chaotic systems can be synchronized based on Lyapunov stability criterion. Moreover, the chattering phenomena of the control efforts can be reduced and the external disturbance on the synchronization error can be attenuated. The stability of the proposed overall adaptive control scheme will be guaranteed in the sense that all the states and signals are uniformly bounded. From the simulation example, to synchronize two non-identical Chua’s chaotic circuits, it has been shown that type-2 FNN controllers have the potential to overcome the limitations of tpe-1 FNN controllers when training data is corrupted by high levels of uncertainty.  相似文献   

5.
基于模糊控制理论和滑模控制理论以及自适应控制理论,研究了一类含有外部扰动的不确定分数阶混沌系统的混合投影同步问题.提出了一种自适应模糊滑模控制的分数阶混沌系统投影同步方法.模糊逻辑系统用来逼近未知的非线性函数和外部扰动,并且对逼近误差采用了自适应控制,同时构造了一种具有较强鲁棒性的分数阶积分滑模面.应用分数阶Barbalat引理设计了自适应模糊滑模控制器和参数自适应律.最后数值仿真结果验证了所提控制方法的有效性.  相似文献   

6.
A class of unknown nonlinear systems subject to uncertain actuator faults and external disturbances will be studied in this paper with the help of fuzzy approximation theory. Using backstepping technique, a novel adaptive fuzzy control approach is proposed to accommodate the uncertain actuator faults during operation and deal with the external disturbances though the systems cannot be linearized by feedback. The considered faults are modeled as both loss of effectiveness and lock-in-place (stuck at some unknown place). It is proved that the proposed control scheme can guarantee all signals of the closed-loop system to be semi-globally uniformly ultimately bounded and the tracking error between the system output and the reference signal converge to a small neighborhood of zero, though the nonlinear functions of the controlled system as well as the actuator faults and the external disturbances are all unknown. Simulation results demonstrate the effectiveness of the control approach.  相似文献   

7.
This paper investigates the problem of adaptive sliding mode control for a class of interval type-2 Itô stochastic fuzzy systems, where the actuator failures may happen. The sliding function is firstly constructed, whose key feature is its dependence on the upper membership functions. And then, an adaptive scheme is proposed to estimate the effectiveness lose values of faulty actuators, and a sliding mode controller based on estimating scheme is designed such that the reachability of the specified sliding surface can be guaranteed even in the presence of actuator failures, in which the lower and upper membership functions are involved. Moreover, the stability conditions of sliding mode dynamics are derived, which involve some coupling terms of Lyapunov matrix and the sliding matrix. By introducing additional matrix variables and employing the cone complementary linearisation algorithm, the above nonlinear stability criterions are decoupled and lastly converted to a minimisation problem with linear constraints. Finally, a numerical example demonstrates the validity of the proposed method.  相似文献   

8.
This paper explores the techniques based on Generalized Proportional Integral Observers (GPI), under the approach of active disturbance rejection, applied to the control of multivariable nonlinear systems with the same number of inputs and outputs (square). As a central axis, a sliding mode control scheme assisted by GPI observers is proposed. These observers are responsible for estimating the disturbances associated with the dynamics of the sliding surfaces produced by non-linearities, not modeled elements, parameter uncertainty and external disturbances. This process allows the creation of sliding regimes under the point of view of decoupled control. As a case study, the position control of a small-scale 2-DOF helicopter affected by adverse operating conditions, such as unknown external disturbances and actuator faults, is considered. Finally, experimental results that validate the proposed control strategy and a comparison with a linear GPI observer-based active disturbance rejection control scheme are presented.  相似文献   

9.
A robust fault‐tolerant attitude control scheme is proposed for a launch vehicle (LV) in the presence of unknown external disturbances, mismodeling dynamics, actuator faults, and actuator's constraints. The input‐output representation is employed to describe the rotational dynamics of LV rendering three independently decoupled second order single‐input‐single‐output (SISO) systems. In the differential algebraic framework, general proportional integral (GPI) observers are used for the estimations of the states and of the generalized disturbances, which include internal perturbations, external disturbances, and unknown actuator failures. In order to avoid the defects of the conventional sliding surface, a new nonlinear integral sliding manifold is introduced for the robust fault‐tolerant sliding mode controller design. The stability of the GPI observer and that of the closed‐loop system are guaranteed by Lyapunov's indirect and direct methods, respectively. The convincing numerical simulation results demonstrate the proposed control scheme is with high attitude tracking performance in the presence of various disturbances, actuator faults, and actuator constraints.  相似文献   

10.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

11.
四旋翼无人机姿态系统的非线性容错控制设计   总被引:1,自引:0,他引:1  
郝伟  鲜斌 《控制理论与应用》2015,32(11):1457-1463
本文研究了四旋翼无人机执行器发生部分失效时的姿态控制问题.通过分析其动力学特性,将执行器故障以乘性因子加入系统模型,得到执行器故障情况下四旋翼无人机的姿态动力学模型.在同时存在未知外部扰动和执行器故障的情况下,设计了一种基于自适应滑模控制的容错控制器.利用基于Lyapunov的分析方法证明了所设计控制器的渐近稳定性.在四旋翼无人机实验平台上进行了实验,验证了该算法对存在未知外部扰动和执行器部分失效时四旋翼无人机的姿态控制具有较好的鲁棒性.  相似文献   

12.
王涛  佟绍成 《信息与控制》1999,28(4):262-267
本文针对一类未知非线性大系统,提出了一种直接自适应模糊分散控制策略.设计中 ,首先在假设各子系统的动态已知的条件下,设计最优分散控制,然后用模糊自适应系统逼 近最优分散控制.同时引入模糊滑模控制消除各个子系统之间的相互作用,外部干扰和模糊 系统的逼近误差.并对所设计的控制系统进行了稳定性分析.  相似文献   

13.
In this paper, an adaptive nonsingular fast terminal sliding mode control (ANFTSMC) is proposed for underwater manipulator robotics with asymmetric actuator saturations and unknown time-varying (TV) external disturbances. Firstly, the nonsingular fast terminal sliding mode (NFTSM) control scheme is conducted for the underwater manipulator robotics, which guarantees the boundedness of all the signals in the control system. Secondly, the adaptive method and the smooth hyperbolic tangent (tanh) function are introduced to address the unknown TV external disturbances and the input saturation errors. Thus the prior knowledge about the upper bounds of the system uncertainties is not needed in this paper. To deal with the nonlinear asymmetric input saturation issue, a Gaussian error function is employed in the asymmetric saturation module so that the discontinuous input signals can be transformed into smooth forms. Thirdly, the rigorous mathematical verification is conducted to demonstrate the stability and finite-time convergence of the closed-loop control system via the Lyapunov theory. Finally, numerical simulations are performed on a two-link underwater manipulator robotic system to illustrate the effectiveness of the proposed controller.  相似文献   

14.
本文以三轴稳定充液航天器为研究背景,在其进行姿态机动控制过程中充分考虑了外部未知干扰、参数不确定、执行器故障和控制输入饱和等因素的影响,提出了一种固定时间终端滑模控制策略.动力学建模过程中,利用粘性球摆等效力学模型模拟液体燃料小幅晃动,通过拉格朗日方程推导出航天器的耦合动力学模型.姿态控制器设计过程中,首先构造固定时间...  相似文献   

15.
In this article, a sliding mode coordinated decentralised state-feedback model reference adaptive control is developed for a class of large-scale uncertain multi-agent systems with time-varying delays in the nonlinear interconnections. The design procedure is based on a combination of the model coordination concept and a sliding mode control methodology. Novel decentralised controller parameterisations that are robust to unknown information exchange delays and to external disturbances with unknown bounds are proposed. Two different controllers are designed: one with discontinuous and one with continuous control action, respectively.  相似文献   

16.
对于一类非线性不确定系统,常规滑模控制器存在"抖振"现象和抗外部扰动作用不理想等问题.本文运用自适应模糊系统逼近滑模控制器参数,并引入一个自适应模糊参数连续逼近常规滑模控制器的开关函数,最后给出一种新型自适应模糊滑模控制器,该方法克服函数和边界层法的不足.仿真实验结果表明该方法增强非线性系统的抗干扰能力和鲁棒性,并大大地削弱系统的"抖振"现象.  相似文献   

17.
针对存在外部干扰、转动惯量矩阵不确定以及执行器故障的航天器姿态跟踪控制问题,本文提出了基于自适应快速非奇异终端滑模的有限时间收敛故障容错控制方案.通过引入能够避免奇异点,且具有有限时间收敛特性的快速非奇异终端滑模面,设计了满足多约束条件有限时间收敛的姿态跟踪容错控制律,利用参数自适应方法使控制器不依赖转动惯量和外部干扰的上界信息.Lyapunov稳定性分析表明:在存在外部干扰、转动惯量矩阵不确定以及执行器故障等约束条件下,本文设计的控制律能够保证闭环系统的快速收敛性,而且对执行器故障具有良好的容错性能.数值仿真校验了该控制律在姿态跟踪控制中的优良性能.  相似文献   

18.
This paper investigates the robust control for the Euler‐Lagrange (EL) system with input saturation by using the integral sliding mode control and adaptive control. An integral sliding mode surface that is suitable for solving the problem of the input constraint is given based on the saturation function. By using the integral sliding mode surface, two robust antisaturation controllers are designed for the EL system with external disturbances. The first controller can deal with the external disturbances with known bounds, whereas the second one can compensate the external disturbances with unknown bounds by using the adaptive control. Finally, the effectiveness of the proposed controllers is demonstrated by strict theoretical analysis and numerical simulations.  相似文献   

19.
对于不同维分数阶混沌系统的投影同步问题,设计了一种自适应滑模控制器。这使得带有内部不确定量和外部扰动的驱动,响应系统能够在任意预设的时间完成同步,自适应律可以逼近未知量的上界。并针对自适应滑模控制器由于干扰产生抖振的问题,提出了两种解决方案。首先是设计二维滑模控制表,将模糊控制方法加入滑模控制器组成模糊自适应滑模控制器...  相似文献   

20.
This study investigates a finite‐time fault‐tolerant control scheme for a class of non‐affine nonlinear system with actuator faults and unknown disturbances. A global approximation method is applied to non‐affine nonlinear system to convert it into an affine‐like expression with accuracy. An adaptive terminal sliding mode disturbance observer is proposed to estimate unknown compound disturbances in finite time, including external disturbances and system uncertainties, which enhances system robustness. Controllers based on finite‐time Lyapunov theory are designed to force tracking errors to zero in finite time. Simulation results demonstrate the effectiveness of proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号