首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical Kerr effect was measured by observing self-phase modulation in GaAs-AlGaAs superlattice-core waveguides modified by ion-implantation quantum-well intermixing. The band-gap energy was shifted by 68 nm for an implantation dose of 0.5times1013 cm-2 and annealing temperature of 775degC. The Kerr effect was suppressed by up to 71% in the transverse-electric polarization after intermixing. A reduced polarization dependence of the self-phase modulation was observed after intermixing.  相似文献   

2.
p+-n shallow-junction diodes were fabricated using on-axis Ga69 implantation into crystalline and preamorphized Si, at energies of 25-75 keV for a dose of 1×1015/cm 2, which is in excess of the dosage (2×1014/cm2) required to render the implanted layer amorphous. Rapid thermal annealing at 550-600°C for 30 s resulted in the solid-phase epitaxial (SPE) regrowth of the implanted region accompanied by high Ga activation and shallow junction (60-130 nm) formation. Good diode electrical characteristics for the Ga implantation into crystalline Si were obtained; leakage current density of 1-1.5 nA/cm2 and ideality factor of 1.01-1.03. Ga implantation into preamorphized Si resulted in a two to three times decrease in sheet resistance, but a leakage current density orders of magnitude higher  相似文献   

3.
High quality nanolaminate stacks consisting of five Al2O3-HfTiO layers with an effective dielectric constant of about 22.5 are reported. A dielectric constant for binary HfTiO thick films of about 83 was also demonstrated. The electrical characteristics of as-deposited structures and ones which were annealed in an O2 atmosphere at up to 950 degC for 5-10 min were investigated. Two types of gate electrodes: Pt and Ti were compared. The dielectric stack which was annealed up to 500 degC exhibits a leakage current density as small as ~1times10-4 A/cm2 at an electric of field 1.5 MV/cm for a quantum-mechanical corrected equivalent oxide thickness of ~0.76 nm. These values change to ~1times10-8 A/cm2 and 1.82 nm, respectively, after annealing at 950 degC  相似文献   

4.
采用化学气相输运(CVT)法和微机械剥离技术制备了SnS2薄膜,使用Au电极作为源、漏电极,n型重掺杂Si作为栅极,制备了基于SnS2薄膜的背栅型场效应晶体管(FET),并研究了其电学特性和可见光探测特性。结果表明,制备的SnS2薄膜具有良好的结晶度,SnS2薄膜背栅型FET具备良好的栅压调控特性。器件对波长为405 nm的蓝紫光表现出明显的光响应,光响应度高达456.82 A·W-1,外量子效率为1.40×105%,比探测率为7.12×1012Jones,并且具有较快的光响应速度,上升和下降响应时间分别为1 ms和0.5 ms。器件的光探测性能受栅压调控,当栅压为40 V时,器件的光响应度可达730 A·W-1。  相似文献   

5.
We have used a Ga0.47In0.53As/InP heterostructure to produce a photodiode (area =3 times 10^{-4}cm2) which shows a saturated dark current of 100 pA at 23°C and 1.7 nA at 50°C. At this dark current, these photodiodes have near-unity quantum efficiency at 1.6 μm and show good photoresponse over the1.0-1.65 mum region of the optical spectrum.  相似文献   

6.
A silicon integrated PIN photodiode sensor, combined with a bipolar IC on same substrate (that is, a PIN photo integrated circuit sensor: PIN-PICS), was developed by employing a high resistive P-- epitaxial layer on a P+ substrate for creating a high speed and high optical responsivity PIN photodiode. We fabricated this device based on two special techniques: (1) the PIN photodiode is formed on a P--/P+ substrate structure and isolated from bipolar components by the combination of a P--well and a trench isolation, and (2) bipolar components are formed by the doubly diffused buried layer of the P--well and the N+ collector wall. All of these components, such as npn and pnp transistors, were arranged within the lightly doped P--well regions. From several kinds of trial samples, the following results were obtained. The PIN photodiode with 0.145 mm2 active area indicated 680 MHz for cutoff frequency at 10 V bias with 830 mn radiation. In the case of 20 V bias, this value exceeded 1.5 GHz. This PIN-PICS was applied to a 10 Mbit/s burst mode compatible optical monolithic receiver and a transimpedance amplifier, and it has shown the expected results  相似文献   

7.
In this paper, an overview and assessment of high-performance receivers based upon Ge-on-silicon-on-insulator (Ge-on-SOI) photodiodes and Si CMOS amplifier ICs is provided. Receivers utilizing Ge-on-SOI lateral p-i-n photodiodes paired with high-gain CMOS amplifiers are shown to operate at 15 Gb/s with a sensitivity of -7.4 dBm (BER=10-12) while utilizing a single supply voltage of only 2.4 V. The 5-Gb/s sensitivity of similar receivers is constant up to 93 degC, and 10-Gb/s operation is demonstrated at 85 degC. Error-free (BER<10-12) operation of receivers combining a Ge-on-SOI photodiode with a single-ended high-speed receiver front end is demonstrated at 19 Gb/s, using a supply voltage of 1.8 V. In addition, receivers utilizing Ge-on-SOI photodiodes integrated with a low-power CMOS IC are shown to operate at 10 Gb/s using a single 1.1-V supply while consuming only 11 mW of power. A perspective on the future technological capabilities and applications of Ge-detector/Si-CMOS receivers is also provided  相似文献   

8.
We report a novel 1000 degC stable HfLaON p-MOSFET with Ir3 Si gate. Low leakage current of 1.8times10-5 A/cm2 at 1 V above flat-band voltage, good effective work function of 5.08 eV, and high mobility of 84 cm2/Vmiddots are simultaneously obtained at 1.6 nm equivalent oxide thickness. This gate-first p-MOSFET process with self-aligned ion implant and 1000 degC rapid thermal annealing is fully compatible to current very large scale integration fabrication lines  相似文献   

9.
We demonstrate, for the first time, the application of dopant-segregation (DS) technique in metal-germanium- metal photodetectors for dark-current suppression and high-speed performance. Low defect density and surface smooth epi-Ge (~300 nm) layer was selectively grown on patterned Si substrate using two-step epi-growth at 400degC/600degC combined with a thin (~10 nm) low-temperature Si/Si0.8 Ge0.2 buffer layer. NiGe with DS effectively modulates the Schottky barrier height and suppresses dark current to ~10 -7 A at -1 V bias (width/spacing: 30/2.5 mum). Under normal incidence illumination at 1.55 mum, the devices show photoresponsivity of 0.12 A/W. The 3 dB bandwidth under - 1 V bias is up to 6 GHz.  相似文献   

10.
A reliable and reproducible deposition process for the fabrication of Al2O3 waveguides with losses as low as 0.1 dB/cm has been developed. The thin films are grown at ~ 5 nm/min deposition rate and exhibit excellent thickness uniformity within 1% over 50times50 mm2 area and no detectable OH- incorporation. For applications of the Al2O3 films in compact, integrated optical devices, a high-quality channel waveguide fabrication process is utilized. Planar and channel propagation losses as low as 0.1 and 0.2 dB/cm, respectively, are demonstrated. For the development of active integrated optical functions, the implementation of rare-earth-ion doping is investigated by cosputtering of erbium during the Al2O3 layer growth. Dopant levels between 0.2-5times1020 cm-3 are studied. At Er3+ concentrations of interest for optical amplification, a lifetime of the 4I13/2 level as long as 7 ms is measured. Gain measurements over 6.4-cm propagation length in a 700-nm-thick Al2O3:Er3+ channel waveguide result in net optical gain over a 41-nm-wide wavelength range between 1526-1567 nm with a maximum of 5.4 dB at 1533 nm.  相似文献   

11.
We report Ir/TiO2/TaN metal-insulator-metal capacitors processed at only 300degC, which show a capacitance density of 28 fF/mum2 and a leakage current of 3 times 10-8 (25degC) or 6 times 10-7 (125degC) A/cm2 at -1 V. This performance is due to the combined effects of 300degC nanocrystallized high-kappa TiO2, a high conduction band offset, and high work-function upper electrode. These devices show potential for integration in future very-large-scale-integration technologies.  相似文献   

12.
Vertical-conducting GaN/mirror/Si light-emitting diodes (LEDs) with thermally stable mirrors have been fabricated using a combination of wafer-bonding and laser liftoff techniques. The thermal stabilities of NiO-Ag, NiO-Ag-Ni, and NiO-Au-Ag mirrors and their effects on the performance of mirror-substrate LEDs were studied. It is found that the NiO-Ag-Ni mirror presents the best performance, where the specific contact resistance and the reflectivity can achieve 5.1times10-3 Omega-cm2 and 92% at 470 nm after oxidation annealing at 500degC for 10 min. The top Ni layer could protect the Ag mirror from clustering during the thermal treatment process. The output powers of the GaN-sapphire and GaN/mirror/Si LEDs with NiO-Au-Ag and NiO-Ag-Ni mirrors show 4.5, 4.3, and 13 mW, respectively.  相似文献   

13.
Results of a monolithically integrated Si optical receiver for applications in optical data transmission and in optical interconnects with wavelengths of 638 and 850 nm are presented. The optoelectronic integrated circuit (OEIC) implementing a vertical p-type-intrinsic-n-type photodiode achieves a data rate of 1 Gb/s for 638 nm with a sensitivity of -15.4 dBm at a bit-error rate of 10-9 . The sensitivity of this OEIC in a 1.0-μm CMOS technology is improved by at least a factor of four compared to that of published submicrometer OEICs. A 25-THz.Ω effective transimpedance bandwidth product of the implemented amplifier is achieved  相似文献   

14.
In this paper, the design, fabrication, and application of a highly tolerant polarization-independent optical-waveguide structure suited for operation in the third communication window is presented. The waveguide structure has been optimized toward minimized sensitivity to technological tolerances and low fabrication complexity. The tolerance analysis has been based on the typical processing tolerances of the widely applied silicon-oxynitride technology, being plusmn3times10 -4 in refractive index, plusmn1% in thickness, and plusmn0.1 mum in channel width. The optimized waveguide design fulfills the criterion of a channel birefringence within 5times10-5, including processing tolerance. It also enables a fiber-to-chip coupling loss below 1 dB/facet and is suited for the realization of low-loss bends with a radius down to 600 mum. Based on this waveguide design, a passband-flattened optical wavelength filter with 50-GHz free spectral range has been realized and tested. The measured TE-TM shift of 0.03 nm confirms the polarization dependence of the optical waveguides being as low as 3times10-5  相似文献   

15.
Si-waveguide-integrated lateral Ge p-i-n photodetectors using novel Si/SiGe buffer and two-step Ge-process are demonstrated for the first time. Comparative analysis between lateral Ge p-i-n and vertical p-Si/i-Ge/n-Ge p-i-n is made. Light is evanescently coupled from Si waveguide to the overlaying Ge- detector, achieving high responsivity of 1.16 A/W at 1550 nm with f3 dB bandwidth of 3.4 GHz for lateral Ge p-i-n detector at 5 V reverse bias. In contrast, vertical p-Si/i-Ge/n-Ge p-i-n has lower responsivity of 0.29 A/W but higher bandwidth of 5.5 GHz at -5 V bias. The higher responsivity of lateral p-i-n detectors is attributed to smaller optical mode overlap with highly doped Ge region as in vertical p-i-n configuration.  相似文献   

16.
The influence of a thermal boundary resistance (TBR) on temperature distribution in ungated AlGaN/GaN field-effect devices was investigated using 3-D micro-Raman thermography. The temperature distribution in operating AlGaN/GaN devices on SiC, sapphire, and Si substrates was used to determine values for the TBR by comparing experimental results to finite-difference thermal simulations. While the measured TBR of about 3.3 x 10-8 W-1 ldr m2 ldr K for devices on SiC and Si substrates has a sizeable effect on the self-heating in devices, the TBR of up to 1.2 x 10-8 W-1 ldr m2 ldr K plays an insignificant role in devices on sapphire substrates due to the low thermal conductivity of the substrate. The determined effective TBR was found to increase with temperature at the GaN/SiC interface from 3.3 x 10-8 W-1 ldr m2 ldr K at 150degC to 6.5 x 3.3 x 10-8 W-1 ldr m2 ldr K at 275degC, respectively. The contribution of a low-thermal-conductivity GaN layer at the GaN/substrate interface toward the effective TBR in devices and its temperature dependence are also discussed.  相似文献   

17.
This letter reports on the impact of selective epitaxial germanium, specifically its local strain effects, on high-performance p-i-n photodetectors for near-infrared applications. By combining a thin compliant Si epitaxial layer (~6 nm) with SiGe buffer (10-15 nm), we demonstrated a high-quality Ge film (~150 nm) prepared by two-step growth. Without using high-temperature cyclic anneal, Ge films with smooth surface (root mean square = ~ 0.67 nm) and low dislocation density (4 x 106 cm-2) have been produced. The Si buffer locally enhances the tensile strain (epsiv = 0.63%) in Ge while slightly suppressing the dark current by half to 0.12 muA (with circular ring area = 1230 mum2 and spacing = 2 mum). A lateral p-i-n Ge photodetector has been demonstrated with enhanced photoresponse of ~190 mA/W at 1520 nm and a 3-dB bandwidth of 5.2 GHz at 1 V.  相似文献   

18.
An LiNbO3 optical integrated circuit pigtailed with two single-mode fibres, which allows time-division two-dimensional velocity measurement, is discussed. To detect time-division multiplexed beat signals corresponding to velocity components vX and vγ of a moving object, a waveguide switch is integrated on a Z-propagating LiNbO3 substrate of 28×7 mm2 in addition to a waveguide interferometer with a frequency shifter. In the optical IC, either vX or vγ could be measured selectively with signal-to-noise ratio of 20 dB by driving an electronic gate placed after a photodiode in synchronization with the waveguide switch  相似文献   

19.
Erbium-doped ion-exchanged waveguide lasers in BK-7 glass   总被引:1,自引:0,他引:1  
Ion-exchange in glass is a simple, flexible technique to realize optical fiber-compatible planar waveguide devices. Recently, neodymium-doped waveguide lasers operating at 1060 and 1300 nm have been demonstrated in this technology. Lasers operating at 1540 nm are desirable for telecommunication applications and the authors report for the first time ion-exchanged waveguide lasers in erbium-doped glass emitting at this wavelength. Lasers in BK-7 glass doped with 0.5 wt.% Er 2O3 and pumped at 980 nm exhibited launched pump power thresholds of 150 mW and slope efficiencies of 0.55%. The waveguides operated in a single transverse mode at the lasing wavelength  相似文献   

20.
Characterization of the structural, optical and electrical properties of GaN layers grown by two epitaxial techniques (ECR-MBE and MOCVD) using different substrates (vicinal Si111 and sapphire) has been performed. The quality of the samples grown by MOCVD seems to be influenced by the nitrogen source used for the growth. Unintentionally doped MBE samples with n-type concentrations around 1018 cm−3 and Hall mobility of 15 cm2 (V s)−1 were studied. GaN films doped with Mg and grown using AlN buffer layers have also been analyzed to study the influence of the thickness of the buffer layer on the optical properties of the GaN epilayer. In the samples with low Mg doping, a thin AlN buffer layer improved the optical quality of the film. In general, all the MBE samples doped with Mg were highly resistive, probably due to a low activation or high ionization energy of the Mg acceptors. Technological issues related to the formation of ohmic contacts on GaN layers are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号