首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The coronavirus COVID-19 pandemic is today’s major public health crisis, we have faced since the Second World War. The pandemic is spreading around the globe like a wave, and according to the World Health Organization’s recent report, the number of confirmed cases and deaths are rising rapidly. COVID-19 pandemic has created severe social, economic, and political crises, which in turn will leave long-lasting scars. One of the countermeasures against controlling coronavirus outbreak is specific, accurate, reliable, and rapid detection technique to identify infected patients. The availability and affordability of RT-PCR kits remains a major bottleneck in many countries, while handling COVID-19 outbreak effectively. Recent findings indicate that chest radiography anomalies can characterize patients with COVID-19 infection. In this study, Corona-Nidaan, a lightweight deep convolutional neural network (DCNN), is proposed to detect COVID-19, Pneumonia, and Normal cases from chest X-ray image analysis; without any human intervention. We introduce a simple minority class oversampling method for dealing with imbalanced dataset problem. The impact of transfer learning with pre-trained CNNs on chest X-ray based COVID-19 infection detection is also investigated. Experimental analysis shows that Corona-Nidaan model outperforms prior works and other pre-trained CNN based models. The model achieved 95% accuracy for three-class classification with 94% precision and recall for COVID-19 cases. While studying the performance of various pre-trained models, it is also found that VGG19 outperforms other pre-trained CNN models by achieving 93% accuracy with 87% recall and 93% precision for COVID-19 infection detection. The model is evaluated by screening the COVID-19 infected Indian Patient chest X-ray dataset with good accuracy.

  相似文献   

2.
Coronavirus disease (COVID-19) is a pandemic that has caused thousands of casualties and impacts all over the world. Most countries are facing a shortage of COVID-19 test kits in hospitals due to the daily increase in the number of cases. Early detection of COVID-19 can protect people from severe infection. Unfortunately, COVID-19 can be misdiagnosed as pneumonia or other illness and can lead to patient death. Therefore, in order to avoid the spread of COVID-19 among the population, it is necessary to implement an automated early diagnostic system as a rapid alternative diagnostic system. Several researchers have done very well in detecting COVID-19; however, most of them have lower accuracy and overfitting issues that make early screening of COVID-19 difficult. Transfer learning is the most successful technique to solve this problem with higher accuracy. In this paper, we studied the feasibility of applying transfer learning and added our own classifier to automatically classify COVID-19 because transfer learning is very suitable for medical imaging due to the limited availability of data. In this work, we proposed a CNN model based on deep transfer learning technique using six different pre-trained architectures, including VGG16, DenseNet201, MobileNetV2, ResNet50, Xception, and EfficientNetB0. A total of 3886 chest X-rays (1200 cases of COVID-19, 1341 healthy and 1345 cases of viral pneumonia) were used to study the effectiveness of the proposed CNN model. A comparative analysis of the proposed CNN models using three classes of chest X-ray datasets was carried out in order to find the most suitable model. Experimental results show that the proposed CNN model based on VGG16 was able to accurately diagnose COVID-19 patients with 97.84% accuracy, 97.90% precision, 97.89% sensitivity, and 97.89% of F1-score. Evaluation of the test data shows that the proposed model produces the highest accuracy among CNNs and seems to be the most suitable choice for COVID-19 classification. We believe that in this pandemic situation, this model will support healthcare professionals in improving patient screening.  相似文献   

3.
Singh  Dilbag  Kumar  Vijay  Kaur  Manjit 《Applied Intelligence》2021,51(5):3044-3051

The extensively utilized tool to detect novel coronavirus (COVID-19) is a real-time polymerase chain reaction (RT-PCR). However, RT-PCR kits are costly and consume critical time, around 6 to 9 hours to classify the subjects as COVID-19(+) or COVID-19(-). Due to the less sensitivity of RT-PCR, it suffers from high false-negative results. To overcome these issues, many deep learning models have been implemented in the literature for the early-stage classification of suspected subjects. To handle the sensitivity issue associated with RT-PCR, chest CT scans are utilized to classify the suspected subjects as COVID-19 (+), tuberculosis, pneumonia, or healthy subjects. The extensive study on chest CT scans of COVID-19 (+) subjects reveals that there are some bilateral changes and unique patterns. But the manual analysis from chest CT scans is a tedious task. Therefore, an automated COVID-19 screening model is implemented by ensembling the deep transfer learning models such as Densely connected convolutional networks (DCCNs), ResNet152V2, and VGG16. Experimental results reveal that the proposed ensemble model outperforms the competitive models in terms of accuracy, f-measure, area under curve, sensitivity, and specificity.

  相似文献   

4.
Since the first case of COVID-19 was reported in December 2019, many studies have been carried out on artificial intelligence for the rapid diagnosis of the disease to support health services. Therefore, in this study, we present a powerful approach to detect COVID-19 and COVID-19 findings from computed tomography images using pre-trained models using two different datasets. COVID-19, influenza A (H1N1) pneumonia, bacterial pneumonia and healthy lung image classes were used in the first dataset. Consolidation, crazy-paving pattern, ground-glass opacity, ground-glass opacity and consolidation, ground-glass opacity and nodule classes were used in the second dataset. The study consists of four steps. In the first two steps, distinctive features were extracted from the final layers of the pre-trained ShuffleNet, GoogLeNet and MobileNetV2 models trained with the datasets. In the next steps, the most relevant features were selected from the models using the Sine–Cosine optimization algorithm. Then, the hyperparameters of the Support Vector Machines were optimized with the Bayesian optimization algorithm and used to reclassify the feature subset that achieved the highest accuracy in the third step. The overall accuracy obtained for the first and second datasets is 99.46% and 99.82%, respectively. Finally, the performance of the results visualized with Occlusion Sensitivity Maps was compared with Gradient-weighted class activation mapping. The approach proposed in this paper outperformed other methods in detecting COVID-19 from multiclass viral pneumonia. Moreover, detecting the stages of COVID-19 in the lungs was an innovative and successful approach.  相似文献   

5.
Guefrechi  Sarra  Jabra  Marwa Ben  Ammar  Adel  Koubaa  Anis  Hamam  Habib 《Multimedia Tools and Applications》2021,80(21-23):31803-31820

The whole world is facing a health crisis, that is unique in its kind, due to the COVID-19 pandemic. As the coronavirus continues spreading, researchers are concerned by providing or help provide solutions to save lives and to stop the pandemic outbreak. Among others, artificial intelligence (AI) has been adapted to address the challenges caused by pandemic. In this article, we design a deep learning system to extract features and detect COVID-19 from chest X-ray images. Three powerful networks, namely ResNet50, InceptionV3, and VGG16, have been fine-tuned on an enhanced dataset, which was constructed by collecting COVID-19 and normal chest X-ray images from different public databases. We applied data augmentation techniques to artificially generate a large number of chest X-ray images: Random Rotation with an angle between ??10 and 10 degrees, random noise, and horizontal flips. Experimental results are encouraging: the proposed models reached an accuracy of 97.20?% for Resnet50, 98.10?% for InceptionV3, and 98.30?% for VGG16 in classifying chest X-ray images as Normal or COVID-19. The results show that transfer learning is proven to be effective, showing strong performance and easy-to-deploy COVID-19 detection methods. This enables automatizing the process of analyzing X-ray images with high accuracy and it can also be used in cases where the materials and RT-PCR tests are limited.

  相似文献   

6.
Corona virus (COVID-19) is once in a life time calamity that has resulted in thousands of deaths and security concerns. People are using face masks on a regular basis to protect themselves and to help reduce corona virus transmission. During the on-going coronavirus outbreak, one of the major priorities for researchers is to discover effective solution. As important parts of the face are obscured, face identification and verification becomes exceedingly difficult. The suggested method is a transfer learning using MobileNet V2 based technology that uses deep feature such as feature extraction and deep learning model, to identify the problem of face masked identification. In the first stage, we are applying face mask detector to identify the face mask. Then, the proposed approach is applying to the datasets from Canadian Institute for Advanced Research10 (CIFAR10), Modified National Institute of Standards and Technology Database (MNIST), Real World Masked Face Recognition Database (RMFRD), and Stimulated Masked Face Recognition Database (SMFRD). The proposed model is achieving recognition accuracy 99.82% with proposed dataset. This article employs the four pre-programmed models VGG16, VGG19, ResNet50 and ResNet101. To extract the deep features of faces with VGG16 is achieving 99.30% accuracy, VGG19 is achieving 99.54% accuracy, ResNet50 is achieving 78.70% accuracy and ResNet101 is achieving 98.64% accuracy with own dataset. The comparative analysis shows, that our proposed model performs better result in all four previous existing models. The fundamental contribution of this study is to monitor with face mask and without face mask to decreases the pace of corona virus and to detect persons using wearing face masks.  相似文献   

7.
The outbreak of the novel coronavirus has spread worldwide, and millions of people are being infected. Image or detection classification is one of the first application areas of deep learning, which has a significant contribution to medical image analysis. In classification detection, one or more images (detection) are usually used as input, and diagnostic variables (such as whether there is a disease) are used as output. The novel coronavirus has spread across the world, infecting millions of people. Early-stage detection of critical cases of COVID-19 is essential. X-ray scans are used in clinical studies to diagnose COVID-19 and Pneumonia early. For extracting the discriminative features through these modalities, deep convolutional neural networks (CNNs) are used. A siamese convolutional neural network model (COVID-3D-SCNN) is proposed in this study for the automated detection of COVID-19 by utilizing X-ray scans. To extract the useful features, we used three consecutive models working in parallel in the proposed approach. We acquired 575 COVID-19, 1200 non-COVID, and 1400 pneumonia images, which are publicly available. In our framework, augmentation is used to enlarge the dataset. The findings suggest that the proposed method outperforms the results of comparative studies in terms of accuracy 96.70%, specificity 95.55%, and sensitivity 96.62% over (COVID-19 vs. non-COVID19 vs. Pneumonia).  相似文献   

8.
Li  Daqiu  Fu  Zhangjie  Xu  Jun 《Applied Intelligence》2021,51(5):2805-2817

With the outbreak of COVID-19, medical imaging such as computed tomography (CT) based diagnosis is proved to be an effective way to fight against the rapid spread of the virus. Therefore, it is important to study computerized models for infectious detection based on CT imaging. New deep learning-based approaches are developed for CT assisted diagnosis of COVID-19. However, most of the current studies are based on a small size dataset of COVID-19 CT images as there are less publicly available datasets for patient privacy reasons. As a result, the performance of deep learning-based detection models needs to be improved based on a small size dataset. In this paper, a stacked autoencoder detector model is proposed to greatly improve the performance of the detection models such as precision rate and recall rate. Firstly, four autoencoders are constructed as the first four layers of the whole stacked autoencoder detector model being developed to extract better features of CT images. Secondly, the four autoencoders are cascaded together and connected to the dense layer and the softmax classifier to constitute the model. Finally, a new classification loss function is constructed by superimposing reconstruction loss to enhance the detection accuracy of the model. The experiment results show that our model is performed well on a small size COVID-2019 CT image dataset. Our model achieves the average accuracy, precision, recall, and F1-score rate of 94.7%, 96.54%, 94.1%, and 94.8%, respectively. The results reflect the ability of our model in discriminating COVID-19 images which might help radiologists in the diagnosis of suspected COVID-19 patients.

  相似文献   

9.
The most salient argument that needs to be addressed universally is Early Breast Cancer Detection (EBCD), which helps people live longer lives. The Computer-Aided Detection (CADs)/Computer-Aided Diagnosis (CADx) system is indeed a software automation tool developed to assist the health professions in Breast Cancer Detection and Diagnosis (BCDD) and minimise mortality by the use of medical histopathological image classification in much less time. This paper purposes of examining the accuracy of the Convolutional Neural Network (CNN), which can be used to perceive breast malignancies for initial breast cancer detection to determine which strategy is efficient for the early identification of breast cell malignancies formation of masses and Breast microcalcifications on the mammogram. When we have insufficient data for a new domain that is desired to be handled by a pre-trained Convolutional Neural Network of Residual Network (ResNet50) for Breast Cancer Detection and Diagnosis, to obtain the Discriminative Localization, Convolutional Neural Network with Class Activation Map (CAM) has also been used to perform breast microcalcifications detection to find a specific class in the Histopathological image. The test results indicate that this method performed almost 225.15% better at determining the exact location of disease (Discriminative Localization) through breast microcalcifications images. ResNet50 seems to have the highest level of accuracy for images of Benign Tumour (BT)/Malignant Tumour (MT) cases at 97.11%. ResNet50’s average accuracy for pre-trained Convolutional Neural Network is 94.17%.  相似文献   

10.
Aim: COVID-19 is a disease caused by a new strain of coronavirus. Up to 18th October 2020, worldwide there have been 39.6 million confirmed cases resulting in more than 1.1 million deaths. To improve diagnosis, we aimed to design and develop a novel advanced AI system for COVID-19 classification based on chest CT (CCT) images.Methods: Our dataset from local hospitals consisted of 284 COVID-19 images, 281 community-acquired pneumonia images, 293 secondary pulmonary tuberculosis images; and 306 healthy control images. We first used pretrained models (PTMs) to learn features, and proposed a novel (L, 2) transfer feature learning algorithm to extract features, with a hyperparameter of number of layers to be removed (NLR, symbolized as L). Second, we proposed a selection algorithm of pretrained network for fusion to determine the best two models characterized by PTM and NLR. Third, deep CCT fusion by discriminant correlation analysis was proposed to help fuse the two features from the two models. Micro-averaged (MA) F1 score was used as the measuring indicator. The final determined model was named CCSHNet.Results: On the test set, CCSHNet achieved sensitivities of four classes of 95.61%, 96.25%, 98.30%, and 97.86%, respectively. The precision values of four classes were 97.32%, 96.42%, 96.99%, and 97.38%, respectively. The F1 scores of four classes were 96.46%, 96.33%, 97.64%, and 97.62%, respectively. The MA F1 score was 97.04%. In addition, CCSHNet outperformed 12 state-of-the-art COVID-19 detection methods.Conclusions: CCSHNet is effective in detecting COVID-19 and other lung infectious diseases using first-line clinical imaging and can therefore assist radiologists in making accurate diagnoses based on CCTs.  相似文献   

11.
李慧慧  闫坤  张李轩  刘威  李执 《计算机应用》2021,41(4):1214-1220
针对目前指针式仪表识别任务在使用深度学习算法时存在模型参数量大、计算量大、准确率较低的问题,提出一种基于改进预训练MobileNetV2网络模型与圆形Hough变换相结合的圆形指针式仪表智能检测和识别系统。首先,采用Hough变换解决复杂场景内非圆形区域的干扰问题;然后,提取圆形区域以构建数据集;最后,使用基于改进预训练MobileNetV2网络模型对圆形指针式仪表进行识别。为客观反映所提模型的性能优劣,采用平均混淆矩阵来衡量模型性能。实验结果表明,该系统在圆形指针式仪表识别任务中的识别率达到99.76%。同时,将所提模型与其他5种不同的网络模型进行对比的结果表明,该模型与ResNet50的准确率最高,但在模型参数量和模型计算量方面,所提网络模型相较于ResNet50分别降低了90.51%和92.40%,可见该模型有助于进一步在移动端或嵌入式设备中部署和实现工业级的实时圆形指针式仪表检测和识别。  相似文献   

12.
The new coronavirus(COVID-19),declared by the World Health Organization as a pandemic,has infected more than 1 million people and killed more than 50 thousand.An infection caused by COVID-19 can develop into pneumonia,which can be detected by a chest X-ray exam and should be treated appropriately.In this work,we propose an automatic detection method for COVID-19 infection based on chest X-ray images.The datasets constructed for this study are composed of194 X-ray images of patients diagnosed with coronavirus and 194 X-ray images of healthy patients.Since few images of patients with COVID-19 are publicly available,we apply the concept of transfer learning for this task.We use different architectures of convolutional neural networks(CNNs)trained on Image Net,and adapt them to behave as feature extractors for the X-ray images.Then,the CNNs are combined with consolidated machine learning methods,such as k-Nearest Neighbor,Bayes,Random Forest,multilayer perceptron(MLP),and support vector machine(SVM).The results show that,for one of the datasets,the extractor-classifier pair with the best performance is the Mobile Net architecture with the SVM classifier using a linear kernel,which achieves an accuracy and an F1-score of 98.5%.For the other dataset,the best pair is Dense Net201 with MLP,achieving an accuracy and an F1-score of 95.6%.Thus,the proposed approach demonstrates efficiency in detecting COVID-19 in X-ray images.  相似文献   

13.
14.
The COVID-19 virus has fatal effect on lung function and due to its rapidity the early detection is necessary at the moment. The radiographic images have already been used by the researchers for the early diagnosis of COVID-19. Though several existing research exhibited very good performance with either x-ray or computer tomography (CT) images, to the best of our knowledge no such work has reported the assembled performance of both x-ray and CT images. Thus increase in accuracy with higher scalability is the main concern of the recent research. In this article, an integrated deep learning model has been developed for detection of COVID-19 at an early stage using both chest x-ray and CT images. The lack of publicly available data about COVID-19 disease motivates the authors to combine three benchmark datasets into a single dataset of large size. The proposed model has applied various transfer learning techniques for feature extraction and to find out the best suite. Finally the capsule network is used to categorize the sub-dataset into COVID positive and normal patients. The experimental results show that, the best performance exhibits by the ResNet50 with capsule network as an extractor-classifier pair with the combined dataset, which is composed of 575 numbers of x-ray images and 930 numbers of CT images. The proposed model achieves accuracy of 98.2% and 97.8% with x-ray and CT images, respectively, and an average of 98%.  相似文献   

15.
目的 新冠肺炎疫情席卷全球,为快速诊断肺炎患者,确认患者肺部感染区域,大量检测网络相继提出,但现有网络大多只能处理一种任务,即诊断或分割。本文提出了一种融合多头注意力机制的联合诊断与分割网络,能同时完成X线胸片的肺炎诊断分类和新冠感染区分割。方法 整个网络由3部分组成,双路嵌入层通过两种不同的图像嵌入方式分别提取X线胸片的浅层直观特征和深层抽象特征;Transformer模块综合考虑提取到的浅层直观与深层抽象特征;分割解码器扩大特征图以输出分割区域。为响应联合训练,本文使用了一种混合损失函数以动态平衡分类与分割的训练。分类损失定义为分类对比损失与交叉熵损失的和;分割损失是二分类的交叉熵损失。结果 基于6个公开数据集的合并数据实验结果表明,所提网络取得了95.37%的精度、96.28%的召回率、95.95%的F1指标和93.88%的kappa系数,诊断分类性能超过了主流的ResNet50、VGG16(Visual Geometry Group)和Inception_v3等网络;在新冠病灶分割表现上,相比流行的U-Net及其改进网络,取得最高的精度(95.96%),优异的敏感度(78.89...  相似文献   

16.
Huang  Zhenxing  Liu  Xinfeng  Wang  Rongpin  Zhang  Mudan  Zeng  Xianchun  Liu  Jun  Yang  Yongfeng  Liu  Xin  Zheng  Hairong  Liang  Dong  Hu  Zhanli 《Applied Intelligence》2021,51(5):2838-2849

The novel coronavirus (COVID-19) pneumonia has become a serious health challenge in countries worldwide. Many radiological findings have shown that X-ray and CT imaging scans are an effective solution to assess disease severity during the early stage of COVID-19. Many artificial intelligence (AI)-assisted diagnosis works have rapidly been proposed to focus on solving this classification problem and determine whether a patient is infected with COVID-19. Most of these works have designed networks and applied a single CT image to perform classification; however, this approach ignores prior information such as the patient’s clinical symptoms. Second, making a more specific diagnosis of clinical severity, such as slight or severe, is worthy of attention and is conducive to determining better follow-up treatments. In this paper, we propose a deep learning (DL) based dual-tasks network, named FaNet, that can perform rapid both diagnosis and severity assessments for COVID-19 based on the combination of 3D CT imaging and clinical symptoms. Generally, 3D CT image sequences provide more spatial information than do single CT images. In addition, the clinical symptoms can be considered as prior information to improve the assessment accuracy; these symptoms are typically quickly and easily accessible to radiologists. Therefore, we designed a network that considers both CT image information and existing clinical symptom information and conducted experiments on 416 patient data, including 207 normal chest CT cases and 209 COVID-19 confirmed ones. The experimental results demonstrate the effectiveness of the additional symptom prior information as well as the network architecture designing. The proposed FaNet achieved an accuracy of 98.28% on diagnosis assessment and 94.83% on severity assessment for test datasets. In the future, we will collect more covid-CT patient data and seek further improvement.

  相似文献   

17.
新型冠状病毒肺炎(COVID-19)大流行疾病正在全球范围内蔓延。计算机断层扫描(CT)影像技术,在抗击全球 COVID-19 的斗争中起着至关重要的作用,诊断新冠肺炎时,如果能够从CT图像中自动准确分割出新冠肺炎病灶区域,将有助于医生进行更准确和快速的诊断。针对新冠肺炎病灶分割问题,提出基于U-Net改进模型的自动分割方法。在编码器中运用了在 ImageNet 上预训练好的 EfficientNet-B0网络,对有效信息进行特征提取。在解码器中将传统的上采样操作换成DUpsampling结构,以此来充分获取病灶边缘的细节特征信息,最后通过模型快照的集成提高分割的精度。在公开数据集上的实验结果表明,所提算法的准确率、召回率和Dice系数分别为84.24%、80.43%和85.12%,与其他的语义分割算法相比,该方法能有效分割新冠肺炎病灶区域,具有良好的分割性能。  相似文献   

18.
This paper demonstrates empirical research on using convolutional neural networks (CNN) of deep learning techniques to classify X-rays of COVID-19 patients versus normal patients by feature extraction. Feature extraction is one of the most significant phases for classifying medical X-rays radiography that requires inclusive domain knowledge. In this study, CNN architectures such as VGG-16, VGG-19, RestNet50, RestNet18 are compared, and an optimized model for feature extraction in X-ray images from various domains involving several classes is proposed. An X-ray radiography classifier with TensorFlow GPU is created executing CNN architectures and our proposed optimized model for classifying COVID-19 (Negative or Positive). Then, 2,134 X-rays of normal patients and COVID-19 patients generated by an existing open-source online dataset were labeled to train the optimized models. Among those, the optimized model architecture classifier technique achieves higher accuracy (0.97) than four other models, specifically VGG-16, VGG-19, RestNet18, and RestNet50 (0.96, 0.72, 0.91, and 0.93, respectively). Therefore, this study will enable radiologists to more efficiently and effectively classify a patient’s coronavirus disease.  相似文献   

19.
目的 新型冠状病毒肺炎(corona virus disease 2019, COVID-19)患者肺部计算机断层扫描(computed tomography, CT)图像具有明显的病变特征,快速而准确地从患者肺部CT图像中分割出病灶部位,对COVID-19患者快速诊断和监护具有重要意义。COVID-19肺炎病灶区域复杂多变,现有方法分割精度不高,且对假阴性的关注不够,导致分割结果往往具有较高的特异度,但灵敏度却很低。方法 本文提出了一个基于深度学习的多尺度编解码网络(MED-Net(multiscale encode decode network)),该网络采用资源利用率高、计算速度快的HarDNet68(harmonic densely connected network)作为主干,它主要由5个harmonic dense block(HDB)组成,首先通过5个空洞空间卷积池化金字塔(atrous spatial pyramid pooling, ASPP)对HarDNet68的第1个卷积层和第1、3、4、5个HDB提取多尺度特征。接着在并行解码器(paralleled parti...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号