首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Time-critical jobs in many real-time applications have multiple feasible intervals. Such a job is constrained to execute from start to completion in one of its feasible intervals. A job fails if the job remains incomplete at the end of the last feasible interval. Earlier works developed an optimal off-line algorithm to schedule all the jobs in a given job set and on-line heuristics to schedule the jobs in a best effort manner. This paper is concerned with how to find a schedule in which the number of jobs completed in one of their feasible intervals is maximized. We show that the maximization problem is -hard for both non-preemptible and preemptible jobs. This paper develops two approximation algorithms for non-preemptible and preemptible jobs. When jobs are non-preemptible, Algorithm Least Earliest Completion Time First (LECF) is shown to have a 2-approximation factor; when jobs are preemptible, Algorithm Least Execution Time First (LEF) is proved being a 3-approximation algorithm. We show that our analysis for the two algorithms are tight. We also evaluate our algorithms by extensive simulations. Simulation results show that Algorithms LECF and LEF not only guarantee the approximation factors but also outperform other multiple feasible interval scheduling algorithms in average.  相似文献   

2.
In certain shared resource applications, such as file access scheduling for a network of computer users, some level of conflict between the elements of the schedule is tolerable. A scheduling problem of this nature may be modelled as a generalisation of the classical vertex colouring problem for graphs, called the maximum degree graph colouring problem. In this paper we present four algorithmic procedures for solving the maximum degree graph colouring problem. The first two of these algorithms (a simple heuristic and a tabu search metaheuristic) produce approximate solutions, while the other two algorithms are exact. The runtime efficiencies of and the solution qualities produced by these procedures are tested with respect to a number of graph benchmarks from the literature.  相似文献   

3.
This paper considers a flexible flow shop scheduling problem, where at least one production stage is made up of unrelated parallel machines. Moreover, sequence- and machine-dependent setup times are given. The objective is to find a schedule that minimizes a convex sum of makespan and the number of tardy jobs in a static flexible flow shop environment. For this problem, a 0–1 mixed integer program is formulated. The problem is, however, a combinatorial optimization problem which is too difficult to be solved optimally for large problem sizes, and hence heuristics are used to obtain good solutions in a reasonable time. The proposed constructive heuristics for sequencing the jobs start with the generation of the representatives of the operating time for each operation. Then some dispatching rules and flow shop makespan heuristics are developed. To improve the solutions obtained by the constructive algorithms, fast polynomial heuristic improvement algorithms based on shift moves and pairwise interchanges of jobs are applied. In addition, metaheuristics are suggested, namely simulated annealing (SA), tabu search (TS) and genetic algorithms. The basic parameters of each metaheuristic are briefly discussed in this paper. The performance of the heuristics is compared relative to each other on a set of test problems with up to 50 jobs and 20 stages and with an optimal solution for small-size problems. We have found that among the constructive algorithms the insertion-based approach is superior to the others, whereas the proposed SA algorithms are better than TS and genetic algorithms among the iterative metaheuristic algorithms.  相似文献   

4.
This paper deals with open shops under makespan minimization. Encoding scheme plays a pivotal role in the success of any algorithm to solve a scheduling problem. Although the permutation list has many advantages (such as high adaptability to any operators, conceptual simplicity and ease of implementation), it suffers from a notorious inherent drawback, called redundancy. This serious drawback has made many researchers conclude that permutation list is ineffective for open shop scheduling. Therefore, they have turned toward the utilization of rank matrix encoding scheme to overcome this shortcoming at the expense of losing other advantages of permutation list. In this paper, we first pinpoint the origin of redundancy in the permutation list. We then analyze circumstances in which the redundancy occurs and afterwards present four efficient theorems to avoid this critical disadvantage. Regarding the theorems, we understand that redundancy is quite identifiable and also controllable. By introducing an alternative possibility to rank matrices of excluding redundancy, the solution space of open shops is significantly reduced. By reducing the search space, the probability of finding an excellent solution in reasonable computational time outstandingly soars. Finally, based on insertion and reinsertion operators we propose four constructive heuristics incorporating simple applications of the theorems. We evaluate the effectiveness and efficiency of our proposed algorithms on three well-known benchmarks and against some other existing heuristics. All the results and analyses illustrate the authenticity and superiority of our theorems and proposed constructive heuristics.  相似文献   

5.
Typically, in order to process jobs in a flowshop both machines and labor are required. However, in traditional scheduling problems, labor is assumed to be plentiful and only machine is considered to be a constraint. This assumption could be due to the lower cost of labor compared to machines or the complexity of dual-resource constrained problems. In this paper a mathematical model is developed to minimize the work-in-process inventory while maximizing the service level in a flowshop with dual resources. The model focuses on optimizing a non-permutation flowshop. There are different skill levels considered for labor and the setup times on machines are sequence-dependent. Jobs are allowed to skip one or more stages in the flowshop. Job release and machine availability times are considered to be dynamic. The problem is solved in two layers. The outer layer is a search algorithm to find the schedule of jobs on the machine (traditional flowshop scheduling problem) and the inner layer is a three-step heuristic to find a schedule of jobs on labor in accordance to the machine schedule. Three different search algorithms are developed to solve the proposed NP-hard problem. First algorithm can solve a permutation flowshop while the other two are developed to solve a non-permutation flowshop. The comparison between the optimal solution and the search algorithms in small examples shows a good performance of the algorithms with an average deviation of only 2.00%. An experimental design analyzes the effectiveness and efficiency of the algorithms statistically. The results show that non-permutation algorithms perform better than the permutation algorithm, although the former are less efficient. The effectiveness and efficiency in all three algorithms have an inverse relation. To the best of our knowledge, this research is the first of its kind to provide a comprehensive mathematical model for dual resource flowshop scheduling problem.  相似文献   

6.
This paper considers a permutation flowshop problem with secondary resources with the objective of minimizing the number of tardy jobs. The number of secondary resources assigned to the machines (workcenters), as well as the allocation of resources among the various machines, will play a significant role in the time required to process each job by its specified due date. This problem finds application in a large number of environments including manufacturing, maintenance, warehousing operations, as well as in healthcare. The research presents a lower bound for the permutation flowshop problem and evaluates its performance against the optimal solution for small, medium, and large instances. Several heuristics, including neighborhood search and simulated annealing, are presented to generate the secondary resource assignment and the allocation of jobs to the schedule. The computational complexity of the lower bound and computational examples for the heuristics are discussed.  相似文献   

7.
In this paper we address the problem of scheduling jobs in a permutation flowshop with a just-in-time objective, i.e. the minimisation of the sum of total tardiness and total earliness. Since the problem is NP-hard, there are several approximate procedures available for the problem, although their performance largely depends on the due dates of the specific instance to be solved. After an in-depth analysis of the problem, different cases or sub-problems are identified and, by incorporating this knowledge, four heuristics are proposed: a fast constructive heuristic, and three different local search procedures that use the proposed constructive heuristic as initial solution.The proposed Prod. Type: FLPheuristics have been compared on an extensive set of instances with the best-so-far heuristic for the problem, as well as with adaptations of efficient heuristics for similar scheduling problems. The computational results show the excellent performance of the proposed algorithms. Finally, the positive impact of the efficient heuristics is evaluated by including them as seed sequences for one of the best metaheuristic for the problem.  相似文献   

8.
陈可嘉  王潇 《控制与决策》2013,28(10):1502-1506
针对两机无等待流水车间调度问题,提出目标函数最大完工时间最小化的快速算法,并给出算法的复杂度。分析两机无等待流水车间调度问题的排列排序性质,证明了两机无等待流水车间调度问题的可行解只存在于排列排序中,排列排序的最优解一定是两机无等待流水车间调度问题的最优解。最后研究了同时包含普通工件和无等待工件的两机流水车间调度问题的复杂性,为进一步研究两机无等待流水车间调度问题提供了理论依据。  相似文献   

9.
In this paper we consider constructive heuristic algorithms for the open shop problem with minimization of the schedule length. By means of investigations of the structure of a feasible solution two types of heuristic algorithms are developed: construction of a rank-minimal schedule by solving successively weighted maximum cardinality matching problems and construction of an approximate schedule by applying insertion techniques combined with beam search. All presented algorithms are tested on benchmark problems from the literature. Our computational results demonstrate the excellent solution quality of our insertion algorithm, especially for greater job and machine numbers. For 29 of 30 benchmark problems with at least 10 jobs and 10 machines we improve the best known values obtained by tabu search.  相似文献   

10.
On parallelizing the multiprocessor scheduling problem   总被引:1,自引:0,他引:1  
Existing heuristics for scheduling a node and edge weighted directed task graph to multiple processors can produce satisfactory solutions but incur high time complexities, which tend to exacerbate in more realistic environments with relaxed assumptions. Consequently, these heuristics do not scale well and cannot handle problems of moderate sizes. A natural approach to reducing complexity, while aiming for a similar or potentially better solution, is to parallelize the scheduling algorithm. This can be done by partitioning the task graphs and concurrently generating partial schedules for the partitioned parts, which are then concatenated to obtain the final schedule. The problem, however, is nontrivial as there exists dependencies among the nodes of a task graph which must be preserved for generating a valid schedule. Moreover, the time clock for scheduling is global for all the processors (that are executing the parallel scheduling algorithm), making the inherent parallelism invisible. In this paper, we introduce a parallel algorithm that is guided by a systematic partitioning of the task graph to perform scheduling using multiple processors. The algorithm schedules both the tasks and messages, and is suitable for graphs with arbitrary computation and communication costs, and is applicable to systems with arbitrary network topologies using homogeneous or heterogeneous processors. We have implemented the algorithm on the Intel Paragon and compared it with three closely related algorithms. The experimental results indicate that our algorithm yields higher quality solutions while using an order of magnitude smaller scheduling times. The algorithm also exhibits an interesting trade-off between the solution quality and speedup while scaling well with the problem size  相似文献   

11.
The problem of scheduling in two different types of flowshops (all jobs available at time zero, different job availability times known a priori) and in flowline-based manufacturing cells is considered with the objective of minimizing the sum of weighted flowtime and weighted tardiness of jobs. First, heuristic preference relations are developed by the consideration of lower bounds on the completion times, operation due-dates, and weights for holding and tardiness of jobs. A heuristic algorithm for scheduling is then proposed by making use of the heuristic preference relations. Two more heuristic algorithms are developed by implementing an improvement scheme to enhance the quality of the solution given by the first heuristic algorithm. The proposed and the existing heuristics are evaluated with respect to the three problem classes under consideration by solving a large number of randomly generated problems. The results of an extensive computational investigation for various problem sizes are presented. It has been observed that all three proposed heuristics perform better than the existing heuristics in giving a solution of superior quality and that the first proposed heuristic yields a good solution by requiring a negligible CPU time. In addition, an experimental investigation is carried out to evaluate the effectiveness of the improvement scheme when implemented in the existing heuristics, and also the effectiveness of heuristics based on simulated annealing. The results are discussed in detail.  相似文献   

12.
Most of the recent heuristics for the graph coloring problem start from an infeasible k-coloring (adjacent vertices may have the same color) and try to make the solution feasible through a sequence of color exchanges. In contrast, our approach (called FOO-PARTIALCOL), which is based on tabu search, considers feasible but partial solutions and tries to increase the size of the current partial solution. A solution consists of k disjoint stable sets (and, therefore, is a feasible, partial k-coloring) and a set of uncolored vertices. We introduce a reactive tabu tenure which substantially enhances the performance of both our heuristic as well as the classical tabu algorithm (called TABUCOL) proposed by Hertz and de Werra [Using tabu search techniques for graph coloring, Computing 1987;39:345–51]. We will report numerical results on different benchmark graphs and we will observe that FOO-PARTIALCOL, though very simple, outperforms TABUCOL on some instances, provides very competitive results on a set of benchmark graphs which are known to be difficult, and outperforms the best-known methods on the graph flat300_28_0. For this graph, FOO-PARTIALCOL finds an optimal coloring with 28 colors. The best coloring achieved to date uses 31 colors. Algorithms very close to TABUCOL are still used as intensification procedures in the best coloring methods, which are evolutionary heuristics. FOO-PARTIALCOL could then be a powerful alternative. In conclusion FOO-PARTIALCOL is one of the most efficient simple local search coloring methods yet available.  相似文献   

13.
We study a scheduling problem with job classes on parallel uniform machines. All the jobs of a given class share a common due-date. General, non-decreasing and class-dependent earliness and tardiness cost functions are assumed. Two objectives are considered: (i) minmax, where the scheduler is required to minimize the maximum earliness/tardiness cost among all the jobs and (ii) minmax-minsum, where the scheduler minimizes the sum of the maximum earliness/tardiness cost in all job classes. The problem is easily shown to be NP-hard, and we focus here on the introduction of simple heuristics. We introduce LPT (Largest Processing Time first)-based heuristics for the allocation of jobs to machines within each class, followed by a solution of an appropriate non-linear program, which produces for this job allocation an optimal schedule of the classes. We also propose a lower bound, based on balancing the load on the machines. Our numerical tests indicate that the heuristics result in very small optimality gaps.  相似文献   

14.
This paper investigates the problem of minimizing makespan on a single batch-processing machine, and the machine can process multiple jobs simultaneously. Each job is characterized by release time, processing time, and job size. We established a mixed integer programming model and proposed a valid lower bound for this problem. By introducing a definition of waste and idle space (WIS), this problem is proven to be equivalent to minimizing the WIS for the schedule. Since the problem is NP-hard, we proposed a heuristic and an ant colony optimization (ACO) algorithm based on the theorems presented. A candidate list strategy and a new method to construct heuristic information were introduced for the ACO approach to achieve a satisfactory solution in a reasonable computational time. Through extensive computational experiments, appropriate ACO parameter values were chosen and the effectiveness of the proposed algorithms was evaluated by solution quality and run time. The results showed that the ACO algorithm combined with the candidate list was more robust and consistently outperformed genetic algorithm (GA), CPLEX, and the other two heuristics, especially for large job instances.  相似文献   

15.
This paper deals with the problem of distributed job shop scheduling in which the classical single-facility job shop is extended to the multi-facility one. The mathematical formulation of the problem is comprehensively discussed. Two different mixed integer linear programming models in form of sequence and position based variables are proposed. Using commercial software of CPLEX, the small sized problems are optimally solved. To solve large sized problems, besides adapting three well-known heuristics, three greedy heuristics are developed. The basic idea behind the developed heuristics is to iteratively insert operations (one at each iteration) into a sequence to build up a complete permutation of operations. The permutation scheme, although having several advantages, suffers from redundancy which is having many different permutations representing the same schedule. The issue is analyzed to recognize the redundant permutation. That improves efficiency of heuristics. Comprehensive experiments are conducted to evaluate the performance of the two models and the six heuristics. The results show sequence based model and greedy heuristics equipped with redundancy exclusion are effective for the problem.  相似文献   

16.
This paper addresses the minimization of the mean absolute deviation from a common due date in a two-machine flowshop scheduling problem. We present heuristics that use an algorithm, based on proposed properties, which obtains an optimal schedule for a given job sequence. A new set of benchmark problems is presented with the purpose of evaluating the heuristics. Computational experiments show that the developed heuristics outperform results found in the literature for problems up to 500 jobs.  相似文献   

17.
We address the two-stage assembly scheduling problem where there are m machines at the first stage and an assembly machine at the second stage. The objective is to schedule the available n jobs so that total completion time of all n jobs is minimized. Setup times are treated as separate from processing times. This problem is NP-hard, and therefore we present a dominance relation and propose three heuristics. The heuristics are evaluated based on randomly generated data. One of the proposed heuristics is known to be the best heuristic for the case of zero setup times while another heuristic is known to perform well for such problems. A new version of the latter heuristic, which utilizes the dominance relation, is proposed and shown to perform much better than the other two heuristics.  相似文献   

18.
This paper studies the two-machine flowshop scheduling problem with job class setups to minimize the total flowtime. The jobs are classified into classes, and a setup is required on a machine if it switches processing of jobs from one class to another class, but no setup is required if the jobs are from the same class. For some special cases, we derive a number of properties of the optimal solution, based on which we design heuristics and branch-and-bound algorithms to solve these problems. Computational results show that these algorithms are effective in yielding near-optimal or optimal solutions to the tested problems.  相似文献   

19.
This paper presents a problem-space genetic algorithm (PSGA)-based technique for efficient matching and scheduling of an application program that can be represented by a directed acyclic graph, onto a mixed-machine distributed heterogeneous computing (DHC) system. PSGA is an evolutionary technique that combines the search capability of genetic algorithms with a known fast problem-specific heuristic to provide the best-possible solution to a problem in an efficient manner as compared to other probabilistic techniques. The goal of the algorithm is to reduce the overall completion time through proper task matching, task scheduling, and inter-machine data transfer scheduling in an integrated fashion. The algorithm is based on a new evolutionary technique that embeds a known problem-specific fast heuristic into genetic algorithms (GAs). The algorithm is robust in the sense that it explores a large and complex solution space in smaller CPU time and uses less memory space as compared to traditional GAs. Consequently, the proposed technique schedules an application program with a comparable schedule length in a very short CPU time, as compared to GA-based heuristics. The paper includes a performance comparison showing the viability and effectiveness of the proposed technique through comparison with existing GA-based techniques.  相似文献   

20.
The graph set T-colouring problem (GSTCP) generalises the classical graph colouring problem; it asks for the assignment of sets of integers to the vertices of a graph such that constraints on the separation of any two numbers assigned to a single vertex or to adjacent vertices are satisfied and some objective function is optimised. Among the objective functions of interest is the minimisation of the difference between the largest and the smallest integers used (the span). In this article, we present an experimental study of local search algorithms for solving general and large size instances of the GSTCP. We compare the performance of previously known as well as new algorithms covering both simple construction heuristics and elaborated stochastic local search algorithms. We investigate systematically different models and search strategies in the algorithms and determine the best choices for different types of instance. The study is an example of design of effective local search for constraint optimisation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号