首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present atmospheric pressure laser-induced acoustic desorption chemical ionization (AP/LIAD-CI) with O(2) carrier/reagent gas as a powerful new approach for the analysis of saturated hydrocarbon mixtures. Nonthermal sample vaporization with subsequent chemical ionization generates abundant ion signals for straight-chain, branched, and cycloalkanes with minimal or no fragmentation. [M - H](+) is the dominant species for straight-chain and branched alkanes. For cycloalkanes, M(+?) species dominate the mass spectrum at lower capillary temperature (<100 °C) and [M - H](+) at higher temperature (>200 °C). The mass spectrum for a straight-chain alkane mixture (C(21)-C(40)) shows comparable ionization efficiency for all components. AP/LIAD-CI produces molecular weight distributions similar to those for gel permeation chromatography for polyethylene polymers, Polywax 500 and Polywax 655. Coupling of the technique to Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for the analysis of complex hydrocarbon mixtures provides unparalleled mass resolution and accuracy to facilitate unambiguous elemental composition assignments, e.g., 1754 peaks (rms error = 175 ppb) corresponding to a paraffin series (C(12)-C(49), double-bond equivalents, DBE = 0) and higher DBE series corresponding to cycloparaffins containing one to eight rings. Isoabundance-contoured plots of DBE versus carbon number highlight steranes (DBE = 4) of carbon number C(27)-C(30) and hopanes of C(29)-C(35) (DBE = 5), with sterane-to-hopane ratio in good agreement with field ionization (FI) mass spectrometry analysis, but performed at atmospheric pressure. The overall speciation of nonpolar, aliphatic hydrocarbon base oil species offers a promising diagnostic probe to characterize crude oil and its products.  相似文献   

2.
The coupling of Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) with electrospray ionization has advanced the analysis of large biopolymers and provided the basis for high-throughput protein characterization (e.g., for rapid "proteome" analyses). In this work, the combination of high-performance capillary liquid chromatography with FTICR mass spectrometry and external ion accumulation has been shown to increase both sensitivity and analysis duty cycle. Instrument versatility is further improved by ion preselection followed by ion accumulation in an external linear quadrupole ion trap. The interface was tested with a 3.5-T FTICR mass spectrometer and evaluated with a number of peptides and proteins whose molecular weights ranged from 500 to 66000. A significant increase in the sensitivity, duty cycle, and dynamic range over that of the previously used accumulated trapping was achieved, exhibiting a detection limit of approximately 10 zmol (approximately 6000 molecules) for smaller proteins such as cytochrome c. Capillary LC external accumulation interface with FTICR was successfully applied for the study of whole-proteome mouse tryptic digests.  相似文献   

3.
Molecular formulas have been assigned for 4626 individual Suwannee River fulvic acids based on accurate mass measurements from ions generated by electrospray ionization and observed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Formula assignments were possible because of the mass accuracy of FTICR MS at high field (9.4 T) and the regular mass spacing patterns found in fulvic acid mixtures. Sorting the 4626 individually observed ions according to Kendrick mass defect and nominal mass series (z* score) revealed that all could be assigned to 1 of 266 distinct homologous series that differ in oxygen content and double bond equivalence. Tandem mass spectrometry based on infrared multiphoton dissociation identified labile fragments of fulvic acid molecules, whose chemical formulas led to plausible structures consistent with degraded lignin as a source of Suwannee River fulvic acids.  相似文献   

4.
Commercial explosives are complex mixtures that contain not only the active explosive agent(s) but also a host of other organic and inorganic compounds. The ultrahigh mass resolving power (m/delta m50% >200,000) and mass accuracy (<1 ppm) of electrospray ionization Fourier transform ion cyclotron resonance (ESI FTICR) mass spectrometry allow for definitive identification of various species in TNT, RDX, and HMX. We are thereby able to correct prior misassignments of the elemental compositions of the most abundant negative ions from electrospray of RDX and HMX. Although the (known) active agents of many explosives may be identified by low-resolution MS or MS/MS, it is the other characteristic components (indigenous or artificial additives) whose presence and elemental composition can potentially identify the source of the product. ESI FTICR mass spectrometry of smokeless powder, TNT, and Powermite resolves and identifies numerous nonactive ingredients, many of which are recovered in a postblast residue. In contrast, the residue recovered from an explosion of military C4 yielded several species derived from RDX but virtually none from other ingredients.  相似文献   

5.
A general mass spectrometry technique for the characterization of alkanethiol-modified surfaces is presented. Alkanethiol self-assembled onto a gold surface (in this case, peptides were attached to the gold surface via a thiolate bond) was reductively desorbed in 0.05 M KOH in the presence of octadecyl-derivatized silica gel. The peptide adsorbed onto the silica gel, whereupon it could be filtered, washed to remove any salts, and then eluted using a mixture of 4:1 v/v methanol/water. The eluant containing the peptide was injected into a Fourier transform ion-cyclotron resonance mass spectrometer (FTICR/MS) via electrospray ionization. The spectrum showed no fragmentation of the peptide, demonstrating the gentleness of the technique. This simple procedure is not limited to FTICR/MS and could be adapted to other mass spectrometers.  相似文献   

6.
Hearn JD  Smith GD 《Analytical chemistry》2004,76(10):2820-2826
A new technique employing chemical ionization mass spectrometry (CIMS) is described that allows the composition of organic particles to be determined on the time scale of seconds. With this Aerosol CIMS technique, particles are vaporized thermally at temperatures up to 480 degrees C, and the resulting vapor is chemically ionized and detected with a quadrupole mass spectrometer. The separation of the vaporization and ionization steps allows greater control and more flexibility for the detection of condensed phases than with other chemical ionization methods. Consequently, composition can be correlated to volatility, providing an additional dimension of information. The use of a variety of positive and negative reagent ions, such as H(+)(H(2)O)(2), H(+)(CH(3)OH)(2), NO(+), O(2)(+), O(2)(-), F(-), and SF(6)(-), offers flexibility in the detection sensitivity and specificity. Furthermore, the degree of fragmentation of the resulting ion can be controlled, providing more straightforward identification and quantification than with other commonly used methods, such as electron impact ionization. Examples are given of the detection of aerosols consisting of organics with various functionalities, including alkanes, alkenes, alcohols, aldehydes, ketones, and carboxylic acids. Applications of this technique to laboratory studies of atmospherically relevant aerosol reactions are discussed.  相似文献   

7.
Methods are being developed for ultrasensitive protein characterization based upon electrospray ionization (ESI) with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The sensitivity of a FTICR mass spectrometer equipped with an ESI source depends on the overall ion transmission, which combines the probability of ionization, transmission efficiency, and ion trapping in the FTICR cell. Our developments implemented in a 3.5 tesla FTICR mass spectrometer include introduction and optimization of a newly designed electrodynamic ion funnel in the ESI interface, improving the ion beam characteristics in a quadrupole-electrostatic ion guide interface, and modification of the electrostatic ion guide. These developments provide a detection limit of approximately 30 zmol (approximately 18,000 molecules) for proteins with molecular weights ranging from 8 to 20 kDa.  相似文献   

8.
A combined mass spectrometry (MS) and tandem mass spectrometry (MS/MS) approach implemented with matrix-assisted laser desorption ionization Fourier transform ion cyclotron resonance mass spectrometry (MALDI FTICR MS) in the negative ion mode is described for enhanced glycopeptide detection and MS/MS analysis. Positive ion mode MS analysis is widely used for glycopeptide characterization, but the analyses are hampered by potential charge-induced fragmentation of the glycopeptides and poor detection of the glycopeptides harboring sialic acids. Furthermore, tandem MS analysis (MS/MS) via collision-induced dissociation (CID) of glycopeptides in the positive ion mode predominantly yields glycan fragmentation with minimal information to verify the connecting peptide moiety. In this study, glycoproteins such as, bovine lactoferrin (b-LF) for N-glycosylation and kappa casein (k-CN) for O-glycosylation were analyzed in both the positive- and negative ion modes after digestion with bead-immobilized Pronase. For the b-LF analysis, 44 potential N-linked glycopeptides were detected in the positive ion mode while 61 potential N-linked glycopeptides were detected in the negative ion mode. By the same token, more O-linked glycopeptides mainly harboring sialic acids from k-CN were detected in the negative ion mode. The enhanced glycopeptide detection allowed improved site-specific analysis of protein glycosylation and superior to positive ion mode detection. Overall, the negative ion mode approach is aimed toward enhanced N- and O-linked glycopeptide detection and to serve as a complementary tool to positive ion mode MS/MS analysis.  相似文献   

9.
Ahn YH  Kim KH  Shin PM  Ji ES  Kim H  Yoo JS 《Analytical chemistry》2012,84(3):1425-1431
As investigating a proteolytic target peptide originating from the tissue inhibitor of metalloproteinase 1 (TIMP1) known to be aberrantly glycosylated in patients with colorectal cancer (CRC), we first confirmed that TIMP1 is to be a CRC biomarker candidate in human serum. For this, we utilized matrix-assisted laser desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) showing ultrahigh-resolution and high mass accuracy. This investigation used phytohemagglutinin-L(4) (L-PHA) lectin, which shows binding affinity to the β-1,6-N-acetylglucosamine moiety of N-linked glycan on a protein, to compare fractionated aberrant protein glycoforms from both noncancerous control and CRC serum. Each lectin-captured fraction containing aberrant glycoforms of TIMP1 was digested by trypsin, resulting in the tryptic target peptide, representative of the serum glycoprotein TIMP1. The resulting target peptide was enriched using a stable isotope standard and capture by the antipeptide antibody (SISCAPA) technique and analyzed by a 15 T MALDI FTICR mass spectrometer with high mass accuracy (Δ < 0.5 ppm to the theoretical mass value of the target peptide). Since exact measurement of multiplex isotopic peaks of the target peptide could be accomplished by virtue of high mass resolution (Rs > 400,000), robust identification of the target peptide is only achievable with 15 T FTICR MS. Also, MALDI data obtained in this study showed that the L-PHA-captured glycoforms of TIMP1 were measured in the pooled CRC serum with about 5 times higher abundance than that in the noncancerous serum, and were further proved by MRM mass analysis. These results confirm that TIMP1 in human serum is a potent CRC biomarker candidate, demonstrating that ultrahigh-resolution MS can be a powerful tool toward identifying and verifying potential protein biomarker candidates.  相似文献   

10.
Component identification of complex mixtures, whether they are from polymeric formulations or combinatorial synthesis, by conventional MS/MS techniques generally requires component separation by chromatography or mass spectrometry. An automated means of acquiring simultaneous MS/MS data from a complex mixture without prior separation is obtained from stored waveform ion modulation (SWIM) two-dimensional FTICR MS/MS. The technique applies a series of SWIFT excitation waveforms whose frequency domain magnitude spectrum is a sinusoid increasing in frequency from one waveform to the next. The controlled dissociation of the precursor ions produces an associated modulation of the product ion abundances. Fourier transformation of these abundances reveals the encoded modulation frequency from which connectivities of precursor and product ions are observed. The final result is total assignment of product ions for each precursor ion in a mixture from one automated experiment. We demonstrated the applicability of SWIM 2D-FTICR MS/MS to two diverse samples of industrial importance. We characterized structured polyester oligomers and products derived from combinatorial synthesis. Fragmentation pathways identified in standard serial ion isolation MS/MS experiments were observed for trimethylolpropane/methyl hexahydrophthalic anhydride. A 20-component sample derived from combinatorial synthesis was fragmented, and the template ion along with another key fragment ion was identified for each of the 20 components.  相似文献   

11.
Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) provides the highest mass resolving power and mass measurement accuracy for unambiguous identification of biomolecules. Previously, the highest-mass protein for which FTICR unit mass resolution had been obtained was 115 kDa at 7 T. Here, we present baseline resolution for an intact 147.7 kDa monoclonal antibody (mAb), by prior dissociation of noncovalent adducts, optimization of detected total ion number, and optimization of ICR cell parameters to minimize space charge shifts, peak coalescence, and destructive ion cloud Coulombic interactions. The resultant long ICR transient lifetime (as high as 20 s) results in magnitude-mode mass resolving power of ~420,000 at m/z 2,593 for the 57+ charge state (the highest mass for which baseline unit mass resolution has been achieved), auguring for future characterization of even larger intact proteins and protein complexes by FTICR MS. We also demonstrate up to 80% higher resolving power by phase correction to yield an absorption-mode mass spectrum.  相似文献   

12.
Laser-induced acoustic desorption (LIAD), combined with chemical ionization by the cyclopentadienyl cobalt radical cation (CpCo.+), is demonstrated to facilitate the analysis of saturated hydrocarbons by Fourier transform ion cyclotron resonance mass spectrometry. The LIAD/CpCo.+ method produces unique pseudomolecular ions for alkanes from C(24)H(50) to C(50)H(102). These alkanes were tested individually and in artificial mixtures of up to seven components. Only one product ion, [R + CpCo - 2H(2)].+, was detected for each alkane (R). The product ions' relative abundances correspond to the relative molar concentration of each alkane in mixtures. These findings provide a solid groundwork for the future application of this method for hydrocarbon polymer analyses.  相似文献   

13.
Ultrasensitive nanoscale proteomics approaches for characterizing proteins from complex proteomic samples of <50 ng of total mass are described. Protein identifications from 0.5 pg of whole proteome extracts were enabled by ultrahigh sensitivity (<75 zmol for individual proteins) achieved using high-efficiency (peak capacities of approximately 10(3)) 15-microm-i.d. capillary liquid chromatography separations (i.e., using nanoLC, approximately 20 nL/min mobile-phase flow rate at the optimal linear velocity of approximately 0.2 cm/s) coupled on-line with a micro-solid-phase sample extraction and a nanoscale electrospray ionization interface to a 11.4-T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS). Proteome measurement coverage improved as sample size was increased from as little as 0.5 pg of sample. It was found that a 2.5-ng sample provided 14% coverage of all annotated open reading frames for the microorganism Deinococcus radiodurans, consistent with previous results for a specific culture condition. The estimated detection dynamic range for detected proteins was 10(5)-10(6). An improved accurate mass and LC elution time two-dimensional data analysis methodology, used to both speed and increase the confidence of peptide/protein identifications, enabled identification of 872 proteins/run from a single 3-h nanoLC/FTICR MS analysis. The low-zeptomole-level sensitivity provides a basis for extending proteomics studies to smaller cell populations and potentially to a single mammalian cell. Application with ion trap MS/MS instrumentation allowed protein identification from 50 pg (total mass) of proteomic samples (i.e., approximately 100 times larger than FTICR MS), corresponding to a sensitivity of approximately 7 amol for individual proteins. Compared with single-stage FTICR measurements, ion trap MS/MS provided a much lower proteome measurement coverage and dynamic range for a given analysis time and sample quantity.  相似文献   

14.
The coupling of matrix-assisted laser desorption/ionization (MALDI) to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) provides an exceptionally capable platform for peptide analysis, but an important limitation of this approach is the difficulty in obtaining informative tandem mass spectra (MS/MS) of singly protonated peptides. This difficulty is especially pronounced with peptide ions containing basic amino acid residues (for example, tryptic peptides). While such ions can be fragmented in some instrument configurations, most FTICR instruments have comparatively little facility for high-energy fragmentation. Here, a novel MS/MS approach implemented with MALDI-FTICR-MS and specifically intended for enhanced fragmentation of singly protonated peptides is described. The method involves infrared irradiation in concert with the simultaneous application of sustained off-resonance irradiation collision-induced dissociation (SORI-CID). This form of MS/MS, described as a combination of infrared and collisional activation (CIRCA), is shown to provide a greater capacity for dissociation of singly charged model peptide ions as compared to infrared multiphoton dissociation (IRMPD) or SORI-CID alone. Overall, the CIRCA approach is demonstrated to be a feasible technique for accessing useful fragmentation pathways of singly charged peptides, including those harboring basic amino acid residues--a crucial feature in the context of proteomics.  相似文献   

15.
Electrospray ionization (ESI) was combined with ultra-high-resolution Fourier transform-ion cyclotron resonance mass spectrometry (FTICR MS) to characterize complex humic and fulvic acid mixtures. Lower than expected molecular weight distributions previously observed for humics when analyzed by ESI-MS have fueled speculation about a bias in favor of low molecular weight. Multiply charged ions, ionization suppression, and sample fragmentation have all been suggested as sources of this low molecular weight bias. In this work, resolution of the individual components of humic mixtures within a 1 mass-to-charge unit window was accomplished by FTICR MS at 9.4 T. At mass resolving powers between 60,000 (high mass) and 120,000 (low mass), it was possible to determine that virtually all ions present in spectra of Suwannee River fulvic and humic acid are singly charged, thus eliminating inadequate accounting for multiply charged ions as a primary source of any low molecular weight bias. The high-resolution mass spectra also revealed the presence of molecular families containing ions that differ from each other in degree of saturation, functional group substitution (primarily CH vs N and CH4 vs O), and number of CH2 groups. Ionization suppression and ion fragmentation were addressed for humic and fulvic acid mixtures and well-characterized poly(ethylene glycol) (PEG) mixtures with average molecular weights of 8000 and 10,000. Although these high molecular weight PEG mixtures fragment extensively under traditional positive-ion mode ESI conditions, similar fragmentation could not be confirmed for humic and fulvic acid mixtures.  相似文献   

16.
We describe a preconcentration device that may be suitable for quantitative analysis of trace volatile ketones and aldehydes in ambient air as well as in human breath. The approach is based on microreactor chips fabricated from silicon wafers. The microreactors have thousands of micropillars in microfluidic channels for uniformly distributing a gaseous sample flowing through the chips. The surfaces of the micropillars are functionalized with a quaternary ammonium aminooxy salt, [2-(aminooxy)ethyl]-N,N,N-trimethylammonium iodide (ATM), for trapping trace ketones and aldehydes by means of oximation reactions. ATM adducts and unreacted ATM are eluted from the microreactor with less than 40 μL of methanol and directly analyzed by nanospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Ketones and aldehydes at levels of 1 ppbv have been detected using this microreactor and FTICR-MS system.  相似文献   

17.
The infrared multiple photon dissociation (IRMPD) spectra of O-glycosylated peptides in the gas phase were studied in the IR scanning range of 5.7-9.5 μm. Fragmentation of protonated and sodiated O-glycopeptides was investigated using electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry (MS) with a free electron laser (FEL). FEL is used in the IRMPD technique as a tunable IR light source. In the IRMPD spectroscopic analysis of the protonated O-glycopeptide, fragment ions of the b/y and B/Y types were observed in the range of 5.7-9.5 μm, corresponding to the cleavage of the backbone in the parent amino acid sequence and glycosyl bonds, whereas the spectra of the sodiated glycopeptide showed major peaks of photoproducts of the B/Y type in the range of 8.4-9.5 μm. The IRMPD spectra of the O-glycopeptides were compared with simulated IR spectra for the structures obtained from the molecular dynamics.  相似文献   

18.
Recent research has shown that the corrosivity of naphthenic acids is related to their molecular mass and that the "total acid number" (TAN), traditionally used as an indicator of the naphthenic acid content of an oil, is not as reliable as first believed. The presence of naphthenic acids in crude oils leads to the corrosion of oil refinery equipment, with the oil industry incurring costs that will ultimately be passed on to the consumer. With regard to these concerns, mass spectrometry has been increasingly applied to the investigation of the naphthenic acid content of crude oils. To ascertain the nature of the species present, however, it is necessary to utilize an ionization technique that does not result in fragmentation, ensuring the detection only of molecular species which provide useful information about the sample constitution. In the following investigation, negative ion mode nanospray Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has been applied to the analysis of crude oil samples, providing insight into the different acidic species that were present. Use of the negative ion mode to allow the selective observation of the naphthenic acids and the inherent high mass accuracy and ultrahigh resolution of FTICR mass spectrometry ensure that this technique is very well suited to the characterization of naphthenic acids within a crude oil sample. Determination of the nature of the naphthenic acids present provides vital information, such as the acids' sizes and composition, which may be used in the battle against corrosion and also used to fingerprint samples from different oil fields.  相似文献   

19.
We present a new method for molecular characterization of intact biochar directly, without sample preparation or pretreatment, on the basis of desorption atmospheric pressure photoionization (DAPPI) coupled to Fourier transform ion cyclotron resonance (FTICR) mass spectrometry. Conventional ionization methods (e.g., electrospray or atmospheric pressure photoionization) for characterization of natural organic matter have limited utility for the characterization of chars due to incomplete solubility in common solvents. Therefore, direct ionization techniques that do not require sample dissolution prior to analysis are ideal. Here, we apply DAPPI FTICR mass spectrometry to enable the first molecular characterization of uncharred parent oak biomass and after combustion (250 °C) or pyrolysis (400 °C). Parent oak is primarily composed of cellulose-, lignin-, and resin-like compounds. Oak combusted at 250 °C contains condensed aromatic compounds with low H/C and O/C ratios while retaining compounds with high H/C and O/C ratios. The bimodal distribution of aromatic and aliphatic compounds observed in the combusted oak sample is attributed to incomplete thermal degradation of lignin and hemicellulose. Pyrolyzed oak constituents exhibit lower H/C and O/C ratios: approximately three-quarters of the identified species are aromatic. DAPPI FTICR MS results agree with bulk elemental composition as well as functional group distributions determined by elemental analysis and solid state (13)C NMR spectroscopy. Complete molecular characterization of biomass upon thermal transformation may provide insight into the biogeochemical cycles of biochar and future renewable energy sources, particularly for samples currently limited by solubility, separation, and sample preparation.  相似文献   

20.
The throughput of proteomics measurements that provide broad protein coverage is limited by the quality and speed of both the separations as well as the subsequent mass spectrometric analysis; at present, analysis times can range anywhere from hours (high throughput) to days or longer (low throughput). We have explored the basis for proteomics analyses conducted on the order of minutes using high-speed capillary RPLC combined through on-line electrospray ionization interface with high-accuracy mass spectrometry (MS) measurements. Short 0.8-microm porous C18 particle-packed 50-microm-i.d. capillaries were used to speed the RPLC separations while still providing high-quality separations. Both time-of-flight (TOF) and Fourier transform ion cyclotron resonance (FTICR) MS were applied for identifying peptides using the accurate mass and time (AMT) tag approach. Peptide RPLC relative retention (elution) times that were generated by solvent gradients that differed by at least 25-fold were found to provide relative elution times that agreed to within 5%, which provides the basis for using peptide AMT tags for higher throughput proteomics measurements. For fast MS acquisition speeds (e.g., 0.2 s for TOF and either approximately 0.3 or approximately 0.6 s for FTICR), peptide mass measurement accuracies of better than +/-15 ppm were obtained with the high-speed RPLC separations. The ability to identify peptides and the overall proteome coverage was determined by factors that include the separation peak capacity, the sensitivity of the MS (with fast scanning), and the accuracy of both the mass measurements and the relative RPLC peptide elution times. The experimental RPLC relative elution time accuracies of 5% (using high-speed capillary RPLC) and mass measurement accuracies of better than +/-15 ppm allowed for the confident identification of >2800 peptides and >760 proteins from >13,000 different putative peptides detected from a Shewanellaoneidensis tryptic digest. Initial results for both RPLC-ESI-TOF and RPLC-ESI-FTICR MS were similar, with approximately 2000 different peptides from approximately 600 different proteins identified within 2-3 min. For <120-s proteomic analysis, TOF MS analyses were more effective, while FTICR MS was more effective for the >150-s analysis due to the improved mass accuracies attained using longer spectrum acquisition times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号